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It is has been recognised by the materials science community for years that sharing data digitally paves a path
to faster progress [9]. Also of relevance is the success of Machine Learning at predicting material properties
for materials science research [10]. At the intersection of these facts lies a unique opportunity for Federated
Learning. Of interest to collaborators in the wider scientific community, therefore, is the effect of different
kinds of data sharing on the performance of models trained under contemporary Federated Learning pipelines.
In this study, we apply such a pipeline, FedRED [5], and simulate different data privacy constraints through
dataset segmentation. By doing this, our study makes the case that sample-space sharing is the most effective
scientific collaboration strategy for Federated Learning. We fortify our results by exploring a wide range
of parameters and models, and by using model regularisation. We also improve our results by exploring an
alternative to standard data preprocessing practices which are prohibited in Federated Learning.
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1 INTRODUCTION
Barriers to collaboration directly hinder scientific progress. One such barrier is the availability of
data, which is essential to the foundation and legitimacy of any scientific endeavour. More data
exists than ever before, but increasing data privacy concerns limit its availability for traditional
Machine Learning (ML) applications at scale.
In general, data privacy concerns are varied and can be affirmed by law [4, 12]. They stand to

protect the property/rights of the originators, and individuals whose information is included in
the data. In the context of scientific collaboration, collaborators are concerned that the exclusivity
of the proprietary, sometimes costly, sourcing of their data will be compromised. This is because,
for traditional ML, it is necessary to have a unified sample and feature space represented by a
single shared dataset. In such situations, collaborators are forced to train models on their data only.
The fact this outcome is suboptimal is not a topic of debate; it is common knowledge within the
ML community that the reliability and insight of models is inextricably dependent on the quality,
quantity and diversity of the data they are trained on. Federated Learning (FL) offers an alternative
where a model can be trained on the data of all collaborators, without the need for sharing. This
presents an opportunity for FL to generate great value for the scientific community.
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Still, FL has to deal with the complications caused by having a distributed and divided dataset;
some degree of data sharing will lead to better results. In some cases, collaborators may have the
freedom to share some aspects of their data. Our study explores the different ways that collaborators
can share some of their data to improve the performance of their models using FL.
As a word on terminology, we advise the reader that we represent both the wider Machine

Learning field and the context where data privacy concerns do not constrain the training process
by the words ‘traditional ML’. We represent the Federated Learning subfield and the context where
data privacy concerns do impose constraints by ‘FL’.

Sharing data in different ways can lead to very different FL settings. These settings are categorized
generally in the FL literature as horizontal, vertical, and hybrid [12], distinguished by the different
interactions of the data that is shared (Figure 1). We simulate the effects of sharing material samples
and/or scientific instruments in the context of materials science. We find that the contemporary FL
pipeline FedRED [5] is applicable to all three FL settings. Informed by studies like ours, scientists
can determine if and how they collaborate with others, with the assistance of novel FL paradigms.
Our study is restricted to materials science by our choice of dataset. Here we attend to the fact

that the motivations behind FL are highly relevant in other fields also. In medicine, ML approaches
often meet or exceed human performance and automate previously time-consuming tasks [1].
There, ethical and commercial concerns regarding data reduce the applicability of ML and halt
progress. Sensitive information such as patient data and intellectual property, on which restrictions
exist, are either incompatible with ML approaches or require significant work to be compatible;
Information agreements and other legal processes are often required [8]. To introduce another
example, this is also regularly the case at the intersection of industry and academia. Businesses
often have superior ML applications and wish to protect their intellectual property. On the other
hand, researches who wish to use these models often face the aforementioned ethical data concerns
[8]. Regardless, collaboration between any parties which have obligations to their data is made
more difficult.

1.1 Federated Learning
The prototypical Federated Learning methodology [7], consists of the following core loop:

1 Perform model training via Stochastic Gradient Descent separately on the local data of each
collaborator (within the aforementioned privacy barriers)

2 Aggregate each model via a ‘Federator’ centrally into one global model, sending only the
respective models to do so.

3 Redistribute the updated global model to the collaborators

In following this methodology, the central model is exposed to the data of all collaborators without
any data ever being shared. From these initial explorations there have been efforts to improve the
core aggregation method resulting in various Federator alternatives such as FedRED (Section 1.2).

The performance of Federated learning has been well underscored in literature. In an evaluation
of FL using the popular FashionMNIST Benchmark, the FL approach was shown to have an accuracy
of 85.15%, only marginally lower than 86.23% for a distributed approach and 87% for a traditional
(single full dataset) approach [2]. This is whilst ignoring the performance benefit in train time that
the distributed training required for FL provides [2]. Federated approaches using sensitive patient
data were shown to be 99% as effective compared to traditional alternatives [11]. Furthermore,
errors that may be introduced by a Federated approach have been shown to be outweighed by
increased access to data that comes as a result of multi institution collaborations [11].
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Fig. 1. The three FL settings, and the traditional whole-dataset setting, are termed ‘scenarios’ in our study

1.2 FedRED
The ‘curse of dimensionality’1 has specific significance in FL; having too many features across
the collaborators means that it is more likely that a collaborator will under-represent at least one
feature. Adding complication is that vertical and hybrid FL settings deal with collaborators that
have unmatched feature spaces, both in dimension and shape. FedRED [5] presented the utility of
Principal Component Analysis (PCA), a quintessential deterministic feature extraction method, in
FL. PCA projects feature vectors to an orthogonal basis which explains the maximum amount of
variance in the data. The key idea of FedRED consists of a three step process. First, the collaborators
are instructed to perform PCA individually, resulting in projection matrices 𝑈1, ...,𝑈𝑛 . Second,
a convex combination 𝑈 of the projection matrices of the collaborators is agreed upon via the
Federator. Third, 𝑈 is communicated back to the collaborators, and they each transform their
datasets 𝑋1, ..., 𝑋𝑛 using this:

𝑋𝑖 = 𝑋𝑖𝑈 , where: 𝑈 =

𝑛∑︁
𝑖=1

𝜆𝑖𝑈𝑖 and
𝑛∑︁
𝑖=1

𝜆𝑖 = 1, 𝜆𝑖 ≥ 0 (1)

This provides a means of reducing the dimensionality of the data and also unifying the different
distributions that each collaborator might have represented in their data.

2 METHODOLOGY
2.1 Dataset
To assess the efficacy of Federated Learning in situations with different levels of collaboration,
our dataset of choice has been partitioned in the feature (column/instrument) and sample (row)
dimensions, as illustrated in (Figure 1). From these partitions we derive four scenarios, each
representing a different collaborative method and a different FL setting.

In Scenario 1, the collaborators do not share any of their samples nor their features. In Scenario 2
samples are shared across all collaborators, but instruments or features are associatedwith individual
collaborators whilst Scenario 3 sees exchange of instruments or features across collaborators. In
Scenario 4, collaborators share both the sample space and feature space. This represents traditional
ML and collaboration without constraints caused by privacy concerns. The performance of the
models trained in Scenario 4 is expected to be better than the performance of models from any
other scenario, due to the lack of constraints, and serves as a baseline.

All data originates from several publicly available datasets [5]. Further information can be found
in Appendix A.
1first termed by Richard. E. Bellman, this phrase refers to issues caused by having high-dimensional feature spaces
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Specifically, our dataset is typical of materials science investigation with each of our collabora-
tors given real roles and likely samples and features based on those roles. The breakdown of their
profession, samples, and measurements can be found below.

Collaborator A Collaborator B Collaborator C
Phycicist Chemist Materials Engineer
Graphene Oxide Nanoflakes Graphene Oxide Quantum Dot Graphene Oxide Nanoflakes

STEM and AFM Imaging IR, FTIR, XPS and XAS
Spectroscopy Raman Spectroscopy

2.2 Targets
The ML task we train our models on is a regression task. In the studied dataset, there are two
targets, Fermi Energy and Thermodynamic Probability (Fermi and Thermo). These targets represent
properties of a material that materials scientists wish to predict based on other measurements.
There are two available regression tasks here. One can choose single target regression for

each target independently, resulting in two models, or one can choose to predict both targets
simultaneously, resulting in one model. In traditional ML, it is a good decision to predict both
simultaneously. This requires the maintenance of only one model. Additionally, learning to do
multiple tasks at once has been shown to lead to more capable models, and the wider ML community
is aware of this effect [3].
We have found that the choice to predict two targets simultaneously introduces new complica-

tions in the setting of FL, as the data privacy constraints prohibit conventional data standardization
techniques prior to training. It is standard practice for regression tasks to transform the targets so
that they are a mean centered with identity covariance. In FL, these conventional processes require
privacy-compromising communication amongst the collaborators. For example, the number of
samples belonging to each collaborator would need to be shared, at least.

A lack of standardization is problematic for multiple target regression. Model errors in the
direction of one target may carry an unfair amount of weight compared to a different target
(relative to the variance of the targets in their axes). There is generally no contextual reason to
treat one target with more importance than the other, so this is an issue. In the studied data, we
note that the variance in the Fermi target is much greater than the variance of the Thermo target
by approximately 30x (Figure 2). Without a substitute for standardization, the model will be biased
to predict more accurately (relative to the variances) on Fermi than Thermo. This exacerbates an
issue already inherent in this data, which is the Thermo target has a heavy skew towards 0.00.

See 2.4 for our proposed solutions to this issue.

2.3 FedRED PCA revisited
In Section 1.2 we gave a brief explanation of the PCA aggregation strategy of FedRED. Here, we
note additional consequences of this idea.

We note that if each collaborator had performed a full PCA transformation to their individual data
beforehand, then the matrices𝑈1, ...,𝑈𝑁 , and finally𝑈 , would be identity matrices. Performing these
PCA transformations individually does not compromise data privacy, and does not compromise the
information held within each dataset, but it does make this PCA aggregation step (1) redundant; a
convex combination of identity matrices gives the identity matrix. Instead, each collaborator can
slice their dataset to the first 𝐷 columns, where 𝐷 is the minimum number of features required to
reach the explanation ratio.
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Fig. 2. Distribution of the Thermo and Fermi targets over the full data. Note the scaling of the axes.

In scenarios 1 and 2, the collaborators have different feature space dimensionalities. This is
illustrated by the different widths of the highlighted regions in Figure 1. If we attempt to apply the
PCA aggregation step proposed in FedRED, then the matrices 𝑈1, ...,𝑈𝑁 will not match in the size
of the second dimension, however, if we apply the aforementioned PCA transformations to each
client individually and take the first 𝐷 columns, then the pipeline can proceed.

2.4 Loss functions for training
MSE
Mean Squared Error loss (MSE) is a commonly applied loss function in regression problems. In the
case of a Linear Regression model on one dataset, MSE provides a closed form analytic solution,
making it particularly applicable to this study. Despite the strengths of MSE loss in traditional
ML appplications, we contend that the lack of target standardisation makes this loss function less
appropriate.

Stable Covariance-Adjusted Loss (SCAL)

Algorithm 1 SCAL

Input: (t, t′ ∈ R𝐵,𝑇 )
𝐶 ← cov(t)
𝐶−1 ← inv(𝐶)
𝜎𝐶
−1

1 ← 2-Norm(𝐶−1)
Δt← t − t′
𝑆 ← 𝐶−1/𝜎𝐶−11
𝐿 ← Δt𝑇𝑆Δt

Output: 𝐿

We propose an alternative loss function for computing the loss of the model which accounts for
potentially skewed target distributions. This loss function is inspired by the Mahalonobis Distance
[6]. With a sufficiently large batch size, the covariance matrix of the targets 𝐶 is often a good
approximation of the true covariance. However, it is sometimes the case that the batch of ground
truth targets t lie on the same hyperplane. When this is the case, the smallest singular value of 𝐶 ,
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𝜎min (𝐶), is close to zero. This causes the largest singular value of 𝐶−1 to be extremely large:

𝜎max (𝐶−1) = 1/𝜎min (𝐶)

The largest singular value is equal to the matrix 2 norm:

| |𝐴| |2 = sup
𝑥≠0

| |𝐴𝑥 | |2
| |𝑥 | |2

= 𝜎max (𝐴)

By the above we see that 𝜎max (𝐶−1) gives an upper bound on the amount that the transformation
𝐶−1 can increase the magnitude of a vector. For this reason, we divide 𝐶−1 by 𝜎max (𝐶−1) before
computing the final loss 𝐿. It was observed that without this division operation, training was
completely unstable. We note that since 𝜎𝑚𝑎𝑥 (𝑆) is 1, this error function never exceeds MSE for the
same inputs. We also note that if the covariance of the ground truth targets 𝐶 is the identity, then
this error is equal to the RMSE. This would be the case if a PCA transformation had been applied
to the targets beforehand.

2.5 Federated model averaging strategies
A key component of FL is the way that the collaborator’s models are averaged to maintain one
centralised model throughout communication rounds. We investigate three weighting schemes
which were already present in the FedRED pipeline: averaging, sample-size weighting and cross-
validation score weighting.

3 FINDINGS AND DISCUSSION
Refer to the appendix for tables containing quantitative results

3.1 Sharing samples is the best collaboration strategy
The results in A.1 demonstrate that Scenario 2, sharing samples, consistently leads to the best model
performance; this is true regardless of what underlying FL strategies are applied. We thought it was
possible that this was due to Scenario 2 providing the models with more data overall. To eliminate
this as a factor, we conducted an experiment where the overall dataset was randomly thinned
beforehand to be match the instance size of the other scenarios. The results of A.2 show that the
performance remains the same under these conditions. This is evidence that there is something
intrinsically beneficial to sharing the sample space, even if features differ.
This result has significant practical ramifications in the context of materials science. It is often

much easier to share samples than share features; sharing features requires that collaborators
provide each other access to their instruments for collecting measurements. Of added significance
is that if collaborators share features, then this access must be sustained during deployment. This
is illustrated in 3.

With these observations in mind, the decision to share samples is a win on two fronts.

3.2 Linear Regression outperforming more complex models in FL tasks
The results in A.1 show that the Linear Regression model outperforms the more complex MLP and
DNN models in most cases. This is unexpected, as the MLP and DNN models have more expressive
power through their ability to handle non-linear relationships in the data. We found that the loss
of these models converged, therefore this is not due to a lack of training. It is more likely that these
models are exploiting their expressive power to over-fit to the training data. It is the subject of
future work to investigate the use of loss functions with regularisation penalties, such as Ridge and
Lasso loss.
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Fig. 3. Visualisation of the FedRED pipeline during training and deployment for Scenarios 2 and 3. Inconve-
nient sharing during deployment in Scenario 3 is marked with a cross.

3.3 SCAL does not outperform MSE but is feasible
The results show that SCAL does not outperform MSE in terms of the final MSE loss value of the
models. Still, our results show that the loss values are highly comparable. This validates the use of
SCAL as a loss function for future work in situations where its features as a loss function may be
more relevant. It is important to acknowledge that the distribution of the targets in from our dataset
is not particularly pathological. In our datset, the skew between each target could be much more
severe, and the targets of each collaborator appear to originate from the same distribution. In future
work it would be worthwhile to evaluate the use of SCAL where the skew of the targets is more
extreme and where the distribution of the targets is not uniform across the different collaborators.

3.4 Aggregated PCs outperforms current FedRed
A.3 has shown that if PC aggregation methods from original FedRed are kept and the optimal
aggregation method is chosen which in this case is straight averaging, resulting model slightly
outperforms the current FedRed. It is expected as aggregation is able to capture information of
distributions from different datasets and thus resulting in a better generalization performance.
Hence, we conclude that our version of FedRed compromises some generalization performance,
but offers greater flexibility for different FL situations.

3.5 Comparison between FL model and non-FL model
We experimented with applying individual collaborator’s models on other datasets to assess their
generalisation ability; the results are shown in A.4. These results demonstrate that non-FL models
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have a extremely poor generalization performance for other local datasets. On the other hand,
in A.1 we observe a consistently good performance for FL-model across all collaborators. Whilst
non-FL models perform better for individual collaborators, the loss of generalisation to new and
varying samples provides a concrete argument for choosing FL in collaborative settings.

4 LIMITATIONS
Due to the PCA aggregation step in the FedRED pipeline, our study of traditional FL includes
scenarios where hybrid or vertical FL approaches may be more appropriate. We do not consider
where our study fits in to these categories, and we do not compare the performance of FedRED to
appropriate vertical / hybrid FL algorithms.

The collaboration techniques explored in this study are relevant only to materials science
and similar domains. For instance, in medicine, the strategy of sharing samples in diagnostic
machine learning tasks is analogous to sharing patients which is often impossible. Furthermore,
the partitioning of our dataset simulates only three clients. Whilst this is a reasonable number
to expect from collaboration in materials science or similar fields, in other FL applications and
particularly industry, the number of clients is likely to be much larger and may produce different
results. This is whilst ignoring the increased infeasibility that certain scenarios, such as sharing
expertise or instruments, bring to the data collection stage of a federated pipeline.
The optimization algorithm used throughout this study is Stochastic Gradient Descent, and no
experimentation with hyperparameters such as learning rate or model structure was conducted.
Although this simplified our study, these choices are not representative of contemporary ML
literature, where more recent optimizers and model architectures are used.

5 CONCLUSION
By evaluating the implementation of Federated Learning across various methods of collaboration
we were able to determine that FL can be best applied in situations where the feature space differs
across collaborators, but the instance space remains constant. This form of collaboration is arguably
the most convenient and realistic in material science and similar fields, in that other collaborative
environments demand increased collaboration to provide features across new instances and during
inference. We ensure that no particular scenario is significantly harmed by the application of
Federated Learning, affirming its ability to perform in varying situations. Ideally, this will encourage
researchers in materials science and related fields to consider collaborating with each-other to train
models in new situations using new Federated Learning technologies.
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A RESULTS TABLES
A.1 Overall Performance (Mean square error)

linreg mlp dnn mean loss best loss best model
Strategy Scenario

Average (MSE) Sc1 0.703 1.259 0.765 0.909 0.703 linreg
Sc2 0.582 0.646 0.694 0.640 0.582 linreg
Sc3 0.831 0.824 0.743 0.799 0.743 dnn

Average (SCAL) Sc1 0.723 0.804 0.789 0.772 0.723 linreg
Sc2 0.620 0.726 0.739 0.695 0.620 linreg
Sc3 0.714 0.790 0.771 0.758 0.714 linreg

Size (MSE) Sc1 0.829 0.780 0.969 0.859 0.780 mlp
Sc2 0.595 0.698 0.739 0.677 0.595 linreg
Sc3 0.778 0.839 0.747 0.788 0.747 dnn

Cross-Val (MSE) Sc1 0.830 1.329 1.113 1.091 0.830 linreg
Sc2 0.589 0.968 1.063 0.874 0.589 linreg
Sc3 0.883 0.844 1.061 0.929 0.844 mlp

Full (MSE) Sc4 0.534 0.521 0.532 0.529 0.521 mlp
Under the strategy column, the unbracketed term denotes the model averaging strategy and the
bracketed term denotes the loss function employed.

A.2 Scenario 2 performance with thinned dataset

linreg mlp dnn mean loss best loss best model

Fold 1 0.586 1.290 0.563 0.813 0.563 dnn
Fold 2 0.591 0.692 0.659 0.647 0.591 linreg
Fold 3 0.592 0.639 0.723 0.652 0.592 linreg
Fold 4 0.586 1.530 0.695 0.937 0.586 linreg
Fold 5 0.581 0.803 0.632 0.672 0.581 linreg
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A.3 Comparison between aggregated and non-aggregated version of FedRed on
scenario 3

Fig. 4. Caption

Experiment Base is the algorithm we are using throughout the project, while avg, er and size are
different aggregation methods for projection matirx which corresponds use straight averaging,
explain ratio and size as aggregated weight for projection matrix.
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A.4 Generalization performance of non-FL model

linreg mlp dnn mean loss best loss best model
Scenario Collaborator

Sc1 A 0.175 0.190 0.186 0.184 0.175 lr
B 33.71 34.27 33.75 33.91 33.71 lr
C 31.29 31.43 31.21 31.31 31.21 dnn
A 31.98 35.14 36.78 34.63 31.98 lr
B 0.524 0.034 0.029 0.196 0.029 dnn
C 24.85 26.03 26.38 25.75 24.85 lr
A 30.53 29.82 31.94 30.76 29.81 mlp
B 26.14 25.91 26.73 26.26 25.91 mlp
C 0.420 0.424 0.421 0.422 0.420 lr

Sc2 A 0.593 0.618 0.590 0.600 0.590 dnn
B 0.650 0.661 0.673 0.645 0.650 lr
C 24.50 25.10 24.63 24.74 24.50 lr
A 24.78 25.44 27.39 25.87 24.78 lr
B 0.296 0.071 0.054 0.140 0.054 dnn
C 24.64 25.12 26.60 25.45 24.64 lr
A 25.33 24.76 26.21 25.43 24.76 mlp
B 0.640 0.666 0.624 0.643 0.624 mlp
C 0.600 0.597 0.597 0.598 0.597 mlp/dnn

Sc3 A 0.108 0.034 0.059 0.067 0.034 mlp
B 33.75 33.97 33.09 33.60 33.09 dnn
C 31.10 31.33 30.35 30.93 30.35 dnn
A 30.02 30.56 31.38 30.65 30.02 lr
B 1.116 1.130 0.935 1.060 0.935 dnn
C 24.12 23.78 23.70 23.87 23.70 dnn
A 29.91 29.58 31.77 30.42 29.58 mlp
B 25.87 25.78 26.82 26.16 25.78 mlp
C 0.414 0.419 0.416 0.416 0.414 lr

The bold letter in collaborator indicates that the model is trained based on this collaborator’s local
dataset.
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All data used in this study can be found at the following DOI locations:
http://doi.org/10.25919/5d395ef9a4291;
http://doi.org/10.25919/5e30b5231c669;
http://doi.org/10.25919/5d3958d9bf5f7;
http://doi.org/10.25919/5d3958ee6f239;
http://doi.org/10.25919/5d22d20bc543e.
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