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Abstract

Tissue segmentation is a key part of the digital pathology workflow, allowing for the
automatic extraction of regions of interest in an image. However, as with most deep
learning methods, a significant amount of quality labeled data is required to train the
models. This challenge is amplified by the high level of expertise required to annotate
the data and the unique characteristics of histopathology images. To address these
challenges, this thesis investigates the use of weakly-supervised segmentation approaches
as a means to reduce the burden of annotation and thereby increase accessibility to tissue
segmentation. Traditional weakly-supervised segmentation approaches can suffer from
poor activation as a result of the model favouring the most discriminative features for
the classification task. While Class Activation Map (CAM) based approaches often
suffer from the problem of partial activation, we propose a novel approach to assist
the model in creating more complete activation maps. We apply a pseudo-supervised
contrastive loss (PSCL) which improves the activation and convergence of these models.
We demonstrate significant increases in performance across domain-standard datasets
and achieve particularly strong performance on the BCSS-WSSS dataset with respect
to the state-of-the-art.
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Chapter 1

Introduction

Histopathology is the diagnosis of disease through the analysis of tissue samples under a
microscope. It is conducted by a medical doctor, known as a pathologist, who examines
the tissue sample and provides a diagnosis, often involving the identification of a disease
or the extent of a disease. It is still considered the gold standard for the diagnosis of
many diseases, the most notable being cancer (Zarella et al., 2018). With the advent of
machine learning, and in particular deep learning, there has been a significant increase
in the use of machine learning methods for histopathology (Komura et al., 2025). This
has been driven by a desire to increase the speed and accuracy of diagnosis, improve con-
sistency of diagnosis and increase the scalability of diagnosis. Whilst various approaches
to Computer Aided Diagnosis (CAD) have been developed, assistance in identifying re-
gions of interest in tissue samples closely mimics the human-pathologist’s approach to
diagnosis. Therefore, semantic segmentation, the identification of regions in an image
to be of a particular class, has attracted great interest. Whilst fully supervised seman-
tic segmentation approaches have been shown to produce strong results, they require
a significant amount of labelled data, often in the form of per-pixel attributions (Kang
et al., 2025). This is in contrast to other tasks, such as classification, which can be
performed with only global labels (Ridnik et al., 2021). Given the high level of expertise
required, the demand for pathologists on other tasks and the unique characteristics of
histopathology images, applying machine learning approaches, particularly those which
are segmentation-based, to histopathology is a significant time and financial burden.

The annotation bottleneck is a significant barrier to the development of semantic segmen-
tation methods for histopathology. Some estimates suggest that the annotation process
for identifying a tumour region can take up to 5 hours, with over 10,000 clicks (Xu
et al., 2022). In recognition of this challenge, significant work has been done to reduce
the amount of annotation required for the task. Of particular interest to this work is the
use of weak supervision, a supervision context in which reduced annotation is used to
train the segmentation task. Applications of such approaches include bounding boxes,
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1 Introduction

scribbles, point annotations and global labels. In the context of this work, Weakly Su-
pervised Semantic Segmentation (WSSS) refers to the use of global labels which indicate
the presence of a certain tissue type in an image to train the segmentation task Han
et al. (2021). This significantly reduces the annotation burden of producing sufficient
data for training and thereby increases accessibility to machine learning approaches to
aid in diagnosis. Some estimates suggest that this could reduce the annotation time by
500x, from 5 hours to 1 minute (Xu et al., 2022). However, weak supervision does not
come without drawbacks.

Perhaps the most common implementation of WSSS is through the use of Class Acti-
vation Maps (CAMs). CAMs highlight the regions of the feature map which are most
discriminative for the classification task by applying the weights of the classification
layer to the last feature map of the network, prior to Global Average Pooling (GAP).
These CAMs are often then used to generate pseudo-labels for the segmentation task.
However, a side effect of weak supervision is that the CAMs suffer from the problem of
partial-activation, where only the most discriminative regions of the image are acti-
vated (Chang et al., 2020; Kang et al., 2025). This is not desirable for the segmentation
task as it inherently means that less discriminative regions can be ignored and misclas-
sified, thereby not providing a whole object segmentation. In response to this challenge,
significant investment has been made in the development of WSSS approaches, including
the use of alternative CAM generation methods such as Grad-CAM (Selvaraju et al.,
2019) or prototype methods such as SIPE (Chen et al., 2022a). Despite this, the problem
of partial-activation persists and is a significant challenge for the development of WSSS
approaches.

As part of a global investigation into the development of WSSS approaches, this work ad-
dresses the issue of partial-activation by introducing the Pseudo-Supervised Contrastive
Loss (PSCL), a novel loss function that leverages a model’s own Class Activation Maps
as pseudo-labels to learn a more semantically separable feature space, directly addressing
the issue of partial activation. We outline the following contributions:

1. We provide a thorough evaluation of existing weakly-supervised segmentation ap-
proaches, including the use of CAMs, prototype methods, contrastive learning and
self-supervised learning to the histopathology domain.

2. We propose the Pseudo-Supervised Contrastive Loss (PSCL), a novel loss function
that leverages a model’s own Class Activation Maps as pseudo-labels to learn a
more semantically separable feature space, directly addressing the issue of partial
activation.

3. We conduct a thorough evaluation of our method on the domain-standard LUAD-
HistoSeg (Bulten et al., 2020) and BCSS-WSSS (Han et al., 2021) datasets, demon-
strating significant performance increases compared to baseline approaches.

4. We achieve results competitive with the state-of-the-art, particularly on the BCSS-
WSSS dataset, validating the effectiveness of our proposed method in a challenging,
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weakly-supervised context.

5. We conduct a thorough evaluation of the wholistic weakly-supervised training
approach, examining the motivation for and impact of various components of a
Weakly Supervised Semantic Segmentation (WSSS) approach.

We break down this work into the following chapters:

• Chapter 2: Background - This chapter provides a background to the histopathology
domain, the digital pathology domain, deep learning and the segmentation task.

• Chapter 3: Related Work - This chapter provides a review of the related work
in the field of WSSS, including the use of CAMs, prototype methods, contrastive
learning and self-supervised learning.

• Chapter 4: Methods - This chapter provides a detailed description of the methods
used in the study, including the implementation of the PSCL approach and the
evaluation of the wholistic weakly-supervised training approach.

• Chapter 5: Evaluation - This chapter provides a detailed description of the evalu-
ation metrics used and the results of the study.

• Chapter 6: Conclusion - This chapter provides a conclusion to the study and
outlines avenues for future work.
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Chapter 2

Background
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2 Background

2.1 Histopathology

2.1.1 Overview

Histopathology is the study of tissue samples under a microscope for the diagnosis of
disease and is often regarded as the gold standard for diagnosis of many diseases, in-
cluded cancer (He et al., 2012). In examining tissue, histopathology lies above cytology
(examination of cells) and below radiology (examination of organs and structures) in
terms of scale within the body (Gurcan et al., 2009).

Figure 2.1: Example histopathology patches. (Han et al., 2021)

Histopathology is not simply the identification of disease, but also the assessment of the
extent of the disease. This may look like the identification of a tumour region, or the
assessment of the severity of a disease such as the grading of a cancer (He et al., 2012).
Whilst cancer is perhaps the most well-known disease studied through histopathology,
it is routinely used to study other diseases such as:

• Infectious diseases such as tuberculosis

• Inflammatory diseases such as Crohn’s disease

• Autoimmune diseases such as coeliac disease

• Organ-specific diseases such as endometriosis

Despite the rise in digital pathology, the vast majority of histopathology is still performed
manually.

2.1.2 Slide Preparation

In order to prepare a tissue sample for examination on a glass slide, there are a number
of steps that are required. Moyes (2019) and (Rolls, 2025) outline some key steps:

Fixation Fixation is the process of preserving the tissue sample to prevent against de-
cay via autolysis or putrefaction. Using chemical or physical methods, such as formalin,
the tissue is preserved such that it can withstand further processing.
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2.2 Digital Histopathology

Dehydration Any water in the tissue is removed by a series of increasing concentra-
tions of alcohol.

Clearing The alcohol is removed from the tissue by a solvent such as xylene.

Embedding Embedding is the process of infiltrating the tissue with a solid medium,
often paraffin wax. This creates sufficient support to allow the tissue to be sectioned.

Sectioning Sectioning is the process of cutting the tissue into thin slices, such that
light can pass through the tissue for examination.

Staining The tissue is stained to highlight particular cell structures or features. The
most common stain applied across a broad range of tissues is Hematoxylin and eosin
(H&E) stain, which stains the nuclei blue and the cytoplasm pink. (Gurcan et al., 2009)

2.2 Digital Histopathology

In response to the desire to increase accessibility of histopathology, as well as increas-
ingly powerful computer-aided-diagnosis tools in other domains such as radiology, dig-
ital histopathology has become increasingly popular (Gurcan et al., 2009). In digital
Histopathology, tissue samples are scanned using a microscope to produce a digital im-
age also known as a Whole Slide Image (WSI). WSIs are produced through multiple
tiles or lines of tissue that are digitally stitched together (Zarella et al., 2018). Scanning
occurs at various magnifications, with scanning at x20 magnification being common for
standard viewing, with some applications requiring x40 magnification to resolve more
detail. Scanners offer up to x100 magnification.

Given the incredible magnification at which a WSI is scanned, the resulting image is often
in the order of gigapixels; a 1mm2 area of tissue at x40 magnification is approximately
48 MB to store. (Orchard Software, 2025; Zarella et al., 2018). Compression of WSIs is
therefore necessary to make them more manageable, however lossy compression methods
such as JPEG can introduce artefacts which can affect the interpretation of the image.
As such, a balance must be struck between the size of the WSI and the quality of the
image. Even with compression, WSIs often exceed 1GB in size. As such, some images
are stored in a pyramid-style format, where multiple downsampled versions of the image
are stored, allowing for pre-rendering of images at different magnifications and thereby
reducing the time required to render an image (Zarella et al., 2018).

Another issue with WSIs is they are susceptible to variability between scanners, known
as inter-scanner variability. Scanners, hardware and settings can vary significantly across
manufacturers and thus affect the quality of the image produced. Whilst human readers
can often adjust to variability, computer vision models are not as robust. (Ryu et al.,
2025)
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2 Background

Figure 2.2: Inter-scanner variability across five different scanners. (Ryu et al., 2025)

Given the large size of WSIs, there exist significant challenges in developing annotations
that are necessary for training deep learning models. A worst case study by Xu et al.
(2022) found that the identification of a tumour region in a WSI required 5 hours of
annotation, with over 10,000 clicks. Such a region can consist of up to 8000 vertices.
The same study found that the use of weaker annotation strategies for a WSI required
around 1 minute per case, a 500x reduction in the time required to annotate a WSI (Xu
et al., 2022).

Furthermore, there also exist large challenges concerning the consistency of annotations
across different annotators. Identified regions can differ significantly in area (up to
46%) across annotators (Marrón-Esquivel et al., 2023), leading to inconsistent pixel-
level annotations. Whilst global annotations can still differ between annotations, there
is generally much higher agreement (Cohen’s Kappa > 0.9) between annotators than
pixel-level annotations (Bulten et al., 2020).

2.2.1 Machine Learning for Histopathology

Whilst a relatively new field in histopathology’s long history, the application of machine
learning methods for histopathology has seen immense growth in recent years. Komura
et al. (2025) find an over 8 fold increase in the number of publications per year between
2018 and 2024.

We can currently categorise the majority of machine learning methods for histopathology
into three main categories:

• Computer-assisted diagnosis (CAD)
CAD is the use of ML approaches to assist pathologists in their diagnosis. Exam-
ples include image classification and segmentation tasks.

• Predicting or Discovering Clinicopathological Relationships
This includes tasks such as predicting survival or recurrence, based on pathologic
features.

• Virtual Staining
Virtual staining is the replacement of the traditional staining process with ML
approaches. Typically, this involves using a model such as a General Adversarial
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2.2 Digital Histopathology

Network (GAN) (Goodfellow et al., 2014) to generate a staining image from a
histopathology image.

It is important to underscore there exist a number of unique challenges of applying
ML-based CAD approaches to histopathology. Komura et al. (2025) outline the four
most common and significant challenges in adapting ML-based CAD approaches to
histopathology:

Large Image Sizes As mentioned, WSIs can be gigapixel-sized which imposes mem-
ory limits in many applications and typically necessitates division of the image into
patches for analysis.

Insufficient labeled data Labelled histopathological images are scarce in nature.
One reason already outlined is the time-intensive nature of expert annotation, but ad-
ditional issues arise given the privacy concerns around medical data. To address these
concerns, production of large publicly available datasets and the development of learning
approaches to limited labeled data are two avenues which have seen significant interest
and which we explore in this work.

Multidimensional analysis Histopathology does not exist in a vacuum. External
information such as patient outcomes, reports, additional tissue samples or imaging are
all dimensions of data which can assist in the understanding of disease processes but
necessitate more complicated analysis techniques.

Domain shifts across institutions The digital histopathological process is suscep-
tible to variation across samples and institutions due to the multiple stages required to
prepare a sample, from surgery to scanning. Factors such as time to fixation, chemical
concentration and differences in stains can introduce variations which can negatively
impact ML outcomes. Coupled with the aforementioned variation across scanners and
even annotators, such shifts necessitate approaches that can generalise well.

These challenges provide significant motivation for the development of weakly-supervised
approaches to histopathology.
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2 Background

2.3 Metric Learning

Metric learning involves learning distance or similarity metrics between samples in a data
space based on the principle that such measures can be used to reveal the underlying
structure of the data. It has applications in a range of fields, including computer vision,
natural language processing, and recommender systems.

2.3.1 Metric Spaces

Fundamental to metric learning is the concept of a metric space. A metric space provides
a notion of distance between points in the space.

Definition 1. A metric space is a set M equipped with a real-valued function D(a, b)
defined for all a, b ∈ M which satisfies the following properties:

1. Positivity: D(a, b) ≥ 0∀a, b ∈ M

2. Symmetry: D(a, b) = D(b, a)∀a, b ∈ M

3. Triangle inequality: D(a, b) ≤ D(a, c) +D(c, b)∀a, b, c ∈ M

A common notion of distance is the Mahalanobis distance, which is a measure of the
distance between two points in a high-dimensional space.

D(a, b) =
√
(a− b)TM(a− b) (2.1)

Where M is a positive semi-definite matrix. The case when M = I is the Euclidean
distance.

An alternative notion of distance popular in the field of metric learning is the cosine
distance, which is a measure of the angle between two vectors.

Definition 2. The cosine similarity between two vectors a and b is defined as:

D(a, b) =
a · b

∥a∥∥b∥
(2.2)

The cosine similarity is a measure of the angle between two vectors, and is particularly
useful for high-dimensional data. Inherently, the cosine similarity varies between −1 and
1, with 1 indicating that the two vectors are identical, and 0 indicating that the two
vectors are orthogonal.

2.3.2 Important Algorithms in Metric Learning

K-Nearest Neighbours

K-Nearest Neighbours (KNN) is a non-parametric classification and regression algorithm
that makes predictions based on the k closest training examples in the feature space.
The algorithm assumes that similar instances are likely to have similar labels.
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2.3 Metric Learning

Formal Definition Given a training datasetD = {(x1, y1), (x2, y2), . . . , (xn, yn)} where
xi ∈ Rd are feature vectors and yi are corresponding labels, and a distance metric d(·, ·),
the k-nearest neighbours of a query point xq are defined as:

Nk(xq) = {x(1), x(2), . . . , x(k)} (2.3)

where x(i) is the i-th nearest neighbour to xq based on the distance metric d.

Algorithm The KNN algorithm proceeds as follows:

1. Distance Computation: For a query point xq, compute the distance to all
training points:

di = d(xq, xi) ∀i ∈ {1, 2, . . . , n} (2.4)

2. Neighbour Selection: Select the k training points with smallest distances:

Nk(xq) = arg min
S⊆D,|S|=k

∑
xi∈S

d(xq, xi) (2.5)

3. Prediction: For classification, predict the majority class among k neighbours:

ŷ = argmax
c

∑
xi∈Nk(xq)

I(yi = c) (2.6)

For regression, predict the average of k neighbours:

ŷ =
1

k

∑
xi∈Nk(xq)

yi (2.7)

Properties

• Lazy Learning: No explicit training phase; all computation occurs at prediction
time

• Non-parametric: Makes no assumptions about the underlying data distribution

• Memory-based: Requires storing the entire training dataset

• Sensitivity to k: Choice of k affects bias-variance tradeoff; smaller k increases
variance, larger k increases bias

• Curse of Dimensionality: Performance degrades in high-dimensional spaces due
to distance concentration

The KNN algorithm is fundamental in metric learning as it directly relies on distance
metrics, making it an ideal candidate for evaluation of learned distance functions.
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K-Means

K-Means is a clustering algorithm that aims to partition a collection of samples into
a fixed number (k) of clusters. The algorithm works by iteratively updating cluster
centroids to minimize the within-cluster sum of squares (WCSS).

Formal Definition Given a dataset X = {x1, x2, . . . , xn} where each xi ∈ Rd, k-
means seeks to find k cluster centroids µ1, µ2, . . . , µk and cluster assignments c1, c2, . . . , cn
(where ci ∈ {1, 2, . . . , k}) that minimize the objective function:

J =

n∑
i=1

∥xi − µci∥2 (2.8)

Algorithm The k-means algorithm proceeds as follows:

1. Initialization: Randomly select k initial centroids µ
(0)
1 , µ

(0)
2 , . . . , µ

(0)
k

2. Assignment Step: For each data point xi, assign it to the nearest centroid:

c
(t)
i = argmin

j
∥xi − µ

(t)
j ∥2 (2.9)

3. Update Step: Update each centroid to be the mean of all points assigned to it:

µ
(t+1)
j =

1

|C(t)
j |

∑
xi∈C

(t)
j

xi (2.10)

where C
(t)
j = {xi : c(t)i = j} is the set of points assigned to cluster j at iteration t.

4. Convergence Check: Repeat steps 2-3 until convergence (no changes in assign-
ments or centroids) or maximum iterations reached.

Properties

• Convergence: The algorithm is guaranteed to converge to a local minimum of
the objective function

• Sensitivity to Initialization: The algorithm is sensitive to initial centroid place-
ment and may converge to different local minima

The k-means algorithm is widely used in metric learning as a baseline clustering method
and can be extended to work with learned distance metrics instead of Euclidean distance.
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2.4 Deep Learning

Deep Learning (DL) is a subfield of machine learning that makes use of artificial neural
networks (ANNs) to model complex relationships between input and output data.

2.4.1 Artificial Neural Networks

Perceptron

The artificial neural network (ANN) is a type of machine learning model inspired by
the structure and function of the human brain. The simplest form of an ANN is the
perceptron, a single layer neural network with a single output node used to perform
binary classification (Rosenblatt, 1958).

Each node in the network is called a neuron and contains a weight and a bias. The
weights are used to scale the input to the neuron whilst

y = (
n∑

i=1

wixi) + b (2.11)

Where wi is the weight of the ith input, xi is the ith input, and b is the bias. The
output of the perceptron is then passed through an activation function to produce the
final output. In the case of the perceptron, the activation function is 1 if the output is
greater than 0, otherwise 0. As a linear model, the perceptron is only able to classify
data that is linearly separable, i.e there exists a hyperplane that can separate the two
classes.

Activation Functions

In order to model more complex relationships between the input and output data of
a perceptron, and ANNs in general, non-linear activation functions are used. Without
non-linear activation functions, the perceptron is only able to model linear relationships
between the input and output data (Rosenblatt, 1958).

Kruse et al. (2013) provides a comprehensive overview of the most common activation
functions used in ANNs, including the sigmoid, softmax, and the ReLU:

• Sigmoid (Logistic) Activation Function:

σ(x) =
1

1 + e−x
(2.12)

The sigmoid function squashes input values to the range (0, 1) and is often used
for binary classification tasks.

• Softmax Activation Function:

Softmax(xi) =
exi∑K
j=1 e

xj
(2.13)
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The softmax function is mainly used in the output layer of a classifier to represent
multi-class probabilities that sum to 1, where K is the number of classes.

• Rectified Linear Unit (ReLU) Activation Function:

ReLU(x) = max(0, x) (2.14)

The ReLU function outputs zero if the input is less than zero, and outputs the
input directly otherwise. It is widely used due to its computational simplicity and
effectiveness in training deep networks.

Multi-Layer Perceptron

Whilst the perceptron can solve simple problems, it is limited in its inability to handle
non-linearly separable data as demonstrated by its inability to solve the XOR problem
(Minsky and Papert, 1969). To address this, stacking multiple perceptrons together in
a multi-layer perceptron (MLP) allows the model to learn more complex relationships
between the input and output data. In an MLP, each layer is connected to the next layer.
The first layer is called the input layer, the last layer is called the output layer, and
the layers in between are called hidden layers.

Figure 2.3: A simple Multi-Layer Perceptron (MLP). Each neuron in one layer is typi-
cally fully connected to every neuron in the next layer. Adapted from (Kruse
et al., 2013).

Generally as the number of hidden layers increases, so too does the ability of the model
to model complex relationships between the input and output data: more hidden layers
may enable the same approximation quality with significant fewer neurons (Kruse et al.,
2013). Importantly, with sufficient hidden layers, ANNs are universal approximators,
meaning that they can model any continuous function to any degree of accuracy (Hornik
et al., 1989). As such, if a task can be modelled as a continuous function, it is possible
to model it with an ANN. This makes ANNs uniquely powerful for a wide range of tasks.
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2.4.2 Gradient-Based Learning

Designing or building an ANN is only the first step in applying machine learning to a
task. We need to train the model on the task at hand. In order to train a neural network,
we must produce an error measure which measures the performance of the model on the
desired task. This is typically referred to as a loss function.

Loss Functions

Broadly, a loss function measures the difference between the predicted output of the
model and the true output. Generally, we define the loss function in terms of the
model parameters θ, which typically measures how well a model is able to fit the data
(Goodfellow et al., 2016).

L(θ) =
∑
i

l(fθ(xi), yi) +R(θ)

where fθ(xi) is the model’s prediction for the ith input, yi is the true output for the ith
input, and R(θ) is a regularisation term.

We optimise the loss function with respect to the model parameters θ.

θ∗ = argmin
θ

L(θ)

As an example, a simple loss function is the mean-squared error (MSE), which measures
the average squared difference between the true and predicted outputs (Kruse et al.,
2013).

MSE(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)
2 (2.15)

Common loss functions for classification tasks, such as the pixel-level segmentation ex-
plored in this work, are the cross-entropy loss and the binary cross-entropy loss. Both
maximise the similarity between the data’s probability distribution and the model’s
probability distribution (Kruse et al., 2013).

Cross-entropy(y, ŷ) = −
n∑

i=1

yi log(ŷi) (2.16)

Binary Cross-entropy(y, ŷ) = −
n∑

i=1

yi log(ŷi) + (1− yi) log(1− ŷi) (2.17)
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Backpropagation

Backpropagation is an efficient algorithm for computing the gradient of the loss function
with respect to the weights of the model first proposed by Rumelhart et al. (1986).
This algorithm sees the application of the chain rule to compute the gradient of the loss
function with respect to the weights at each layer of the model. Consider the case of a
single layer perceptron with a sigmoid activation function.

ŷ = σ(wTx+ b)

where w is the weight vector, x is the input vector, and b is the bias. We can compute
the gradient of the loss in terms of the weights by applying the chain rule.

∂L

∂w
=

∂L

∂ŷ

∂ŷ

∂w

=
∂L

∂ŷ

(
σ(wTx+ b)(1− σ(wTx+ b))x

)

By computing the gradient of the loss function with respect to each parameter in the
model we can perform gradient descent on the model parameters to minimise the loss
function.

θt+1 = θt − η∇L(θt) (2.18)

Where θt is the parameters of the model at time t, η is the learning rate, and ∇L(θt) is
the gradient of the loss function with respect to the weights of the model at time t.

Stochastic Gradient Descent

(Goodfellow et al., 2016) outline perhaps the most common algorithm used to train a
model is that of stochastic gradient descent (SGD) which updates the weights of the
model in the direction of the negative gradient of the loss function with respect to a
selection of data, rather than the entire dataset. This selection of data is often referred to
as a minibatch. SGD employs a learning rate parameter, which is a hyperparameter
that controls the step size by which the weights are updated. The learning rate is
typically chosen to be small enough to ensure that the model converges to a global
minimum, but large enough to ensure that the model is able to learn the data. A simple
SGD update rule is given by:

θt+1 = θt − η
1

m

m∑
i=1

∇L(f(x(i); θt), y
(i)) (2.19)

where m is the batch size, x(i) and y(i) are the ith input and label in the minibatch, and
the gradient is averaged over the minibatch.
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Momentum is a technique to smooth the gradient descent by introducing a moving
average of past gradients into the gradient update (Goodfellow et al., 2016).

The learning rate does not necessarily have to be fixed during the training process; a
scheduler is a function that is used to alter the learning rate of the model over time.
An example of a scheduler is a simple scheduler that linearly decreases the learning rate
over time.

η(t) = η0

(
1− t

T

)
(2.20)

Where η0 is the initial learning rate, t is the current epoch, and T is the total number
of epochs.

In this work we make use of a Polynomial Decay scheduler, which is a scheduler that
decays the learning rate according to a polynomial function.

η(t) = η0

(
1− t

T

)p

(2.21)

Where η0 is the initial learning rate, t is the current epoch, T is the total number of
epochs, and p is the power of the polynomial.

2.4.3 Empirical Techniques

In practice, there are a range of empirical techniques that are used to improve the
performance of a model.

Data Augmentation

Data augmentation is a technique used to artificially increase the size of a dataset and
thereby increase the ability of a model to generalise by applying transformations to the
data. It increases the amount of unique data that the model is exposed to and can act
as a regularisation technique, preventing the model from memorising the training data.
In the case of image data, this often looks like apply transformations to the image such
as cropping, rotation, scaling, and flipping.

Optimisers

Optimisers are algorithms used to alter how the gradient of the loss function is applied
to the weights of the model. There are many other optimisers, such as Adam (Kingma
and Ba, 2017), and AdamW (Loshchilov and Hutter, 2019) which are significantly more
complex with respect to the learning rate schedule.

Pre-training

Pre-training is a technique used to improve model performance by training on a large,
often more general, dataset before fine-tuning on a smaller, more task-specific dataset.
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This has been demonstrated to significantly improve performance when compared to
random initialisation of the model weights (Ridnik et al., 2021).

Figure 2.4: Depiction of the ImageNet dataset. Source: (Deng et al., 2009a).

In the computer vision domain, perhaps the most common pre-training dataset is Ima-
geNet (Deng et al., 2009a). ImageNet is a dataset of over 1.2 million images categorised
into 1000 classes. It is a large, general dataset that is often used to pre-train models for
the classification task. Another popular pre-training dataset is ImageNet-21k (Ridnik
et al., 2021), which is a larger version of ImageNet with 21,841 classes.

2.4.4 Supervision in Deep Learning

Returning to the notion of loss functions, we can now consider the use of labelled data
to train a model. The supervision of a learning task refers to the amount and type of
labelled data that is available to the model. Across the literature there are two broad
contexts of supervision (Goodfellow et al., 2016):

• Fully Supervised: The model is trained on a dataset with fully labelled data.

• Unsupervised: The model is trained on a dataset with no labelled data.

As an example, in a fully-supervised setting labels might consist of the class of the image,
the bounding box of the object in the image, or the segmentation mask of the object in
the image. In an unsupervised setting, the goal is to learn the distribution of the data.
For example, clustering data using K-means or other probabilistic models is an example
of an unsupervised context.

We can further clarify these contexts by considering the context in between fully super-
vised and unsupervised. This is known as semi-supervised learning (SSL) (Chapelle
et al., 2005), where the model has access to some supervision but may not necessarily
have access to all the labels or the labels may not be directly relevant to the task at
hand. Most relevant to this work, the latter context, where the labels are not directly
relevant to the task at hand, is known in the literature as weakly-supervised learning
(WSL) (Kang et al., 2025; Han et al., 2021).
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2.4.5 Classification Metrics

Classification is one of the most fundamental tasks in machine learning, and as such,
there are a range of metrics used to evaluate the performance of a classification model.
Each of the following metrics evaluates different aspects of the performance of a classi-
fication model.

Accuracy Accuracy is the most basic metric for evaluating the performance of a clas-
sification model. It is defined as the number of correctly classified samples divided by
the total number of samples.

Accuracy =
TP + TN

TP+ TN+ FP + FN
(2.22)

Where TP is the number of true positives, TN is the number of true negatives, FP is
the number of false positives, and FN is the number of false negatives.

Precision Precision is the ratio of true positives to the total number of samples clas-
sified as positive.

Precision =
TP

TP + FP
(2.23)

Recall Recall is the ratio of true positives to the total number of samples that are
actually positive.

Recall =
TP

TP + FN
(2.24)

F1 Score The F1 score is the harmonic mean of precision and recall.

F1 Score = 2× Precision× Recall

Precision + Recall
(2.25)

2.4.6 Convolutional Neural Networks

A convolutional neural network (CNN) is a type of ANN which incorporates convo-
lutional layers alongside traditional fully connected layers (i.e MLPs) that are par-
ticularly useful for image data. In CNNs, the convolutional layers are used to extract
features from the image, which are then passed through to the MLPs to produce the final
output. CNNs have long been the dominant architecture for image processing tasks, and
are still widely used in a range of applications.

Convolution

We start by exploring a convolution as an example of the mathematical operation that
is used in CNNs. A convolution is a mathematical operation involving two functions, f
and g, to produce a third function, h. Goodfellow et al. (2016) defines a convolution as:
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A convolution is a mathematical operation involving two functions, f and g, to produce
a third function, defined as:

h(x) =

∫
f(t)g(x− t)dt (2.26)

Where f(t) is the input, g(x − t) is the kernel, and h(x) is often referred to as the
feature map.

In the context of CNNs, as the image is discrete and two-dimensional and thus the filter
is a small matrix of weights that are applied to the input image in a sliding window
manner and the kernel is two-dimensional.

h(x, y) =

m∑
i=1

n∑
j=1

f(i, j)g(x− i, y − j) (2.27)

Where m and n are the dimensions of the filter (Goodfellow et al., 2016).

Figure 2.5: Example of convolution operation using a filter (kernel) sliding over an image.
The output is a feature map. (Goodfellow et al., 2016)

Convolutions can be performed with different strides, which is the step size at which
the filter is applied to the input image. Convolutions may also be dilated, which is the
process of adding spacing between the filter weights in order to create a larger effective
filter whilst maintaining the same number of parameters. Convolutional layers are layers
where the parameters correspond to kernels, rather than a linear set of weights. In this
way, the model can learn parameters that correspond with spatial information in an
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image, to extract image features and characteristics. These features are then used by
the fully connected layers to produce the final output.

Pooling

Another important operation in CNNs is that of pooling. Pooling is a technique used
to reduce the spatial resolution of feature maps. There are two main types of pooling:
max pooling and average pooling. Average pooling takes the average value of the
area of the feature map that is being pooled. Max pooling takes the maximum value of
the area of the feature map that is being pooled.

Figure 2.6: Max and average pooling (Buckner, 2019)

Global average pooling (GAP) and global max pooling (GMP) are special cases of pooling
where the entire feature map is pooled. In particular, GAP is traditionally used after the
final convolutional layer within a CNN to produce a fixed-length vector representation
of the input image from which a linear (classification) layer can be applied to produce
the final output.

Residual Networks (ResNets)

Residual Networks (ResNets) proposed by He et al. (2015) are a fundamental CNN
architecture that are used across a range of tasks and are often used as backbone models
for segmentation tasks (Kang et al., 2025; Chang et al., 2020; Cheng et al., 2022). The
key component of the ResNet architecture is the residual block, which is a block that
is used to skip the forward pass of the network and add the input to the output. The
residual block increases stability of large deep networks by mitigating the problem of
vanishing gradients. Figure 2.7 illustrates the residual block.

He et al. (2015) introduce various standard depths, denoted by the number of layers in
the network, including ResNet18, ResNet34, ResNet50 and ResNet101.
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Figure 2.7: Illustration of the residual block. (He et al., 2015)

2.4.7 Transformers

First introduced by Vaswani et al. (2023), the Transformer is a neural network architec-
ture that is designed to process sequential data in parallel in response to the limitations
of recurrent neural networks (RNNs). The key component of the Transformer is the
self-attention mechanism, which allows the model to attend to different parts of the
input sequence in parallel.

Transformer Architecture

The transformer architecture consists of two main components: the encoder and the
decoder. The encoder is responsible for encoding the input sequence into a sequence
of feature vectors, and the decoder is responsible for decoding the feature vectors into
a sequence of output tokens. The encoder and decoder are both composed of a stack
of identical layers known as transformer blocks, which are themselves composed of a
self-attention mechanism and a feed-forward network (MLP). This architecture is shown
in Figure 2.8.
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Figure 2.8: Illustration of the transformer architecture. (Vaswani et al., 2023)
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Attention Mechanism

The key component of the transformer is the self-attention mechanism, which allows
the model to attend to different parts of the input sequence in parallel. Vaswani et al.
(2023) introduces the self-attention mechanism and its application to the transformer
architecture. The attention mechanism consists of three main parameters, the query,
key, and value matrices. The query and key matrices are used to compute the attention
weights, and the value matrix is used to compute the weighted sum of the value vectors.
The attention weights are computed by taking the dot product of the query and key
matrices, and then applying a softmax function to the result.

attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (2.28)

Where Q is the query matrix, K is the key matrix, V is the value matrix, and dk is the
dimension of the key and query matrices. The Q K and V matrices are computed by
multiplying the input sequence by three learned matrices, WQ, WK , and W V .

The attention mechanism is applied to the input sequence in parallel, and the output is
a weighted sum of the value vectors, where the weights are determined by the similarity
between the query and key vectors. Importantly, attention is applied globally: each
token in the input sequence is attended to by every other token in the sequence. Multi-
head attention introduces multiple attention heads to the mechanism, each with its own
set of query, key, and value matrices. The output of the multi-head attention is the
concatenation of the outputs of the individual attention heads. This allows the model
to attend to different parts of the input sequence in parallel, and is particularly effective
for capturing global context.

Vision Transformers

Introduced by Dosovitskiy et al. (2021), Vision Transformers (ViTs) adapt the trans-
former architecture to the image domain, largely by treating an image as a sequence
of tokens, akin to the use of the transformer in natural language processing. The ViT
architecture consists of a transformer encoder with a classification head appended to the
end. Images are split into a grid of patches, and each patch is passed through a linear
projection layer to produce a token. The full architecture is Figure 2.9.
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Figure 2.9: Illustration of the Vision Transformer architecture. (Dosovitskiy et al., 2021)

ViTs have been shown to approach or exceed the performance of state-of-the-art CNNs
on a range of tasks, including image classification. Although, it is important to note
that they generally require a greater amount of data to train in order to produce such
results when compared to non-transformer based models (Dosovitskiy et al., 2021; Liu
et al., 2021).

Inherently, converting an image into a sequence of tokens removes the spatial information
from the image, and as such, position encodings, fixed or learned, are added to the patch
embeddings. The broad benefit of ViTs is that they consider the global receptive field of
the image from the start by means of the self-attention mechanism. This is in contrast
to CNNs, which are inherently local, and require multiple layers in order to capture the
global context of the image.

The standard ViT architecture maintains a single, constant feature resolution throughout
all its layers which makes it less suitable for the semantic segmentation task. To address
this, Hierarchical Vision Transformers (HViTs), such as the Swin Transformer (Liu et al.,
2021) or HIPT (Chen et al., 2022b) use a hierarchical architecture to capture both local
and global information.

Swin Transformers Despite the success of ViTs in the image domain, they can suf-
fer performance degradation in low-data settings (Caron et al., 2021) and miss out on
local features that CNNs are adept at capturing (Li et al., 2023). In response to such
difficulties, various modifications to the ViT architecture to address these issues have
been proposed. The Swin Transformer, is a modified Vision Transformer (ViT) that uses
shifted window self-attention, similar to convolutional layers, to introduce hierarchical
structure to the ViT (Liu et al., 2021). As the layers progress, the spatial resolution of
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the feature maps is reduced whilst the embedding dimension is increased. This is shown
in Figure 2.10.

Figure 2.10: Illustration of the Swin Transformer architecture, showing the hierarchical
design and shifted window self-attention mechanism. (Liu et al., 2021)

Swin Transformers of all sizes outperform Resnet101 (He et al., 2015) when used as the
backbone model for semantic segmentation (Liu et al., 2021). Furthermore, they do so
with significantly fewer parameters. The hierarchical nature of the Swin Transfomer also
means they can often be used a drop-in replacement for CNNs in segmentation tasks
such as the MaskFormer (Cheng et al., 2022).

ConvNeXt (Liu et al., 2022) introduce the ConvNeXt family of models which ”mod-
ernify” the ResNet architecture by replacing ResNet components with their transformer
counterparts, moving towards the structure of the Swin Transformer. Changes include:
introduction of a patch embedding layer, larger kernel sizes and depth-wise convolutions
which mimic self-attention. Whilst this approach has been demonstrated to outperform
the Swin Transformer on the ImageNet dataset in some contexts, it has not been as
popular as a backbone model for semantic segmentation.

2.4.8 Deep Metric Learning

Building from the idea of metric learning, deep metric learning applies deep learning
techniques to learn a metric space from a set of data. Much of traditional deep learning
principles apply, with changes being focused on the task at hand. This is primarily
achieved by the use of loss functions which aim to ensure certain properties of the
embedding space are satisfied.
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Loss Functions

Given that the separability of an embedding space is not a target of the loss functions,
only indirectly influenced, the loss functions used in deep metric learning instead aim
to ensure certain properties of the embedding space are satisfied. Generally, loss func-
tions used in deep metric learning are based on the principle of contrasting similar and
dissimilar pairs of embeddings. With respect to a loss function, we define a positive
pair as a pair of samples of the same class, and a negative pair as a pair of samples of
different classes. Another common notion is that of an anchor, which is a sample used
as the point from which the distance to the positive and negative samples is computed.
Mohan et al. (2023) provide a comprehensive overview of three of the most common
loss functions used in deep metric learning: the contrastive loss, the triplet loss, and the
n-pair loss.

Contrastive Loss A foundational loss function applied to the representation of pairs
is the contrastive loss, which aims to manipulate the representation of samples, such
that samples of the same class have increased similarity (or decreased distance), whilst
samples of different classes are further apart (or increased distance) (Hadsell et al., 2006).

L(y, x1, x2) =
1

2
(1− y) (f1 − f2)

2 +
1

2
y (f1 − f2)

2 (2.29)

Where y is the label of the pair, x1 and x2 are the embeddings of the two samples, and
f1 and f2 are the features of the two samples.

Triplet Loss Another standard loss function for deep metric learning is the triplet
loss, which extends the contrastive loss to include a third sample, the anchor, which
is used as the point from which the distance to the positive and negative samples is
computed.

L(y, xa, xp, xn) = max(0, d(xa, xp)− d(xa, xn) + α) (2.30)

Where d(xa, xp) is the distance between the anchor and the positive sample, d(xa, xn)
is the distance between the anchor and the negative sample, and α is the margin.

This can be thought of as an extension of the contrastive loss, where the anchor-positive
similarity is maximised whilst the anchor-negative similarity is minimised by a margin
α.

N-pair Loss One limitation that may be immediately evident in the contrastive and
triplet loss formulations is that they only consider a single positive and negative pair for
each sample. This doesn’t necessarily represent the ultimate goal of deep metric learning,
which is to separate all samples into their respective classes. Additionally, triplet and
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contrastive losses can be susceptible to slow convergence (Mohan et al., 2023). The
n-pair loss extends this to include multiple positive and negative pairs for each sample.

L =
1

B

B∑
i=1

log

1 +

B∑
j=1
j ̸=i

exp
(
d(xia, x

j
p)− d(xia, x

i
p)
) (2.31)

Where B is the batch size, xia is the i-th anchor, xip is the positive sample corresponding
to the i-th anchor.

2.4.9 Foundation Models

Given the significant advances in empirical techniques, hardware and data availability,
the training of large-scale deep learning models has become more feasible. This has led
to the rise of foundation models, which are large-scale deep learning models trained
on large datasets which are often used as a starting point for downstream tasks. Models
may be fine-tuned with training data specific to the downstream task or used without
further training for ”in-context learning” such as prompting, as described by Schneider
(2022).

Typically, foundation models are trained in a self-supervised manner, such as by using
contrastive learning, to both reduce the amount of training data required and to improve
the generalisation of the model (Caron et al., 2021; Vorontsov et al., 2024; Chen et al.,
2022b).
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2.5 Segmentation

Segmentation is the process of partitioning an image into regions. It can be broadly
categorise into three main types: semantic, instance, and panoptic.

• Semantic Segmentation: Each pixel in an image is assigned a class label, group-
ing together all pixels belonging to the same class without distinguishing between
different instances of the same class.

• Instance Segmentation: Each pixel is assigned a class label as well as an instance
label, which differentiates between different instances of the same class.

• Panoptic Segmentation: Combines both semantic and instance segmentation
by assigning a unique label to every pixel, indicating both the class and the specific
instance (if applicable).

Figure 2.11: Segmentation types (Buhl, 2024)
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2.5.1 Traditional Segmentation Methods

Prior to the advent of deep learning, there existed a range of traditional segmentation
methods. These

Thresholding

Thresholding is a simple method for segmentation, using a grayscale image and a thresh-
old value to binarise the image.

Ii,j =

{
1 if Ii,j > T

0 otherwise
(2.32)

where Ii,j is the intensity of the pixel at position (i, j), and T is the threshold value.

Morphological Operations

Morphological operations are operations applied to binary images. They are used to
remove noise and small objects from the image, and to enhance the boundaries of objects.
A morphological operation requires a structuring element, or kernel, which outlines
the neighbourhood over which the operation is applied. There are two fundamental
morphological operations: dilation and erosion. Dilation adds pixels to the boundaries
of the object, while erosion removes pixels from the boundaries of the object.

2.5.2 Deep Learning Based Segmentation Methods

With the advent of deep learing, traditional segmentation methods were largely replaced
by deep learning based methods.

Fully Convolutional Networks

Much of the deep-learning semantic segmentation methods of today can be attributed
to the development of the Fully Convolutional Network (FCN) framework (Long et al.,
2015). Rather than using fully connected layers as is appropriate for image classification,
FCNs make use of convolution layers to directly produce feature maps for each pixel (or
pixel group) in the image. Combined with upsampling through reverse convolutions,
FCNs are able to produce a segmentation mask for the entire image.

The FCN framework has been widely adopted in the encoders of encoder-decoder archi-
tectures. (Csurka et al., 2023; Buhl, 2024)

Encoder-Decoder Architectures

Drawing from the NLP domain, the encoder-decoder architecture is a popular archi-
tecture for semantic segmentation. As its name suggests, it is a two part architecture
consisting of an encoder and a decoder. The encoder is responsible for transforming the
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Figure 2.12: Fully Convolutional Network (Buhl, 2024)

input image into latent features, and the decoder is response for transforming the latent
features into the final segmentation mask. Perhaps the most notable influential encoder-
decoder architecture and of particular relevance to this work is the U-Net (Ronneberger
et al., 2015), The key-innovation of the U-Net is the introduction of skip connections
which allow output from the encoder layers to be concatentated with the input to the
decoder layers. This allows the decoder to have access to higher resolution feature maps,
rather than the lower resolution latent feature maps. Figure 2.13 illustrates the U-Net
architecture.

The U-Net has become a ubiquitous architecture for semantic segmentation, particularly
in the field of biomedical image segmentation (Berman et al., 2021; Zeng et al., 2025a)

2.5.3 Evaluation Metrics

Given the unique nature of segmentation tasks, there are a range of metrics which can
evaluate different aspects of the performance of a segmentation model.

Intersection over Union (IoU)

The Intersection over Union (IoU) is a common metric for evaluating the performance
of semantic segmentation models. It is calculated as the intersection of the predicted
and ground truth masks divided by the union of the predicted and ground truth masks.

IoU =
TP

TP + FP + FN
(2.33)

The mean IoU (mIoU) is simply an average of the IoU across all classes. The frequency
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Figure 2.13: The U-Net architecture. (Ronneberger et al., 2015)

weighted IoU (fwIoU) is a weighted average of the IoU across all classes, weighted by
the frequency of the class in the dataset (i.e the number of pixels).

Dice Score

The Dice Score is a common metric for evaluating the performance of semantic segmen-
tation models. It is calculated as twice the intersection of the predicted and ground
truth masks divided by the sum of the predicted and ground truth masks.

Dice =
2× TP

TP + FP + FN
(2.34)

Mean Average Precision (mAP)

The Mean Average Precision (mAP) is a common metric for evaluating the performance
of semantic segmentation models. It is calculated as the average of the precisions at
different recall levels.

Pixel Accuracy

The Pixel Accuracy is a common metric for evaluating the performance of semantic
segmentation models. It is calculated as the number of correctly classified pixels divided
by the total pixels.
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Chapter 3

Related Work

3.1 Contrastive and Self-Supervised Learning

Focused on the underlying representation of data in a latent space, contrastive and self-
supervised learning approaches have been shown to be effective in learning representa-
tions of data without additional annotation, a significant advantage for the histopathol-
ogy domain and other low-data settings. Many successful methods for weakly-supervised
semantic segmentation, both in and out of the histopathology domain, make use of self-
supervised learning and contrastive learning (Zeng et al., 2025a; Tang et al., 2025).

3.1.1 Supervised Contrastive Learning

In the supervised domain, much of the literature has focused on the choice of contrastive
loss function. Expanding basic contrastive losses which only consider pairs or triplets
of embeddings to the supervised domain has seen success. The supervised contrastive
loss (Khosla et al., 2021) considers multiple positives and negatives, rather than only a
single positive and multiple negatives as seen in basic contrastive losses. This allows it
to better leverage available label information, as evidenced in its increased performance
on the ImageNet dataset (Khosla et al., 2021). An additional benefit is that its structure
naturally performs hard negative mining, which avoids hyperparameter tuning that may
otherwise be required.

3.1.2 Self-Supervised Contrastive Learning

Self-Supervised Learning has emerged as a powerful approach for learning meaningful
representations of data without or with minimal annotation. The core idea across the
literature is to generate similar representations for augmented views of the same image,
and different representations for different images. The augmentations inherent to the
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contrastive learning framework have the additional benefit of making models robust to
inter-scanner variability and stain variability. (Komura et al., 2025)

Such an approach is formulated by SimCLR (Chen et al., 2020), MoCo (He et al., 2015),
and DINO (Caron et al., 2021) in the creation of positive pairs by means of image
augmentation and negative pairs as other images in a batch. A contrastive loss function
is then applied to the representations, aiming to maximise the similarity between the
embeddings of the same image, and minimise the similarity between the embeddings of
different images. The contrastive loss in question is often the NT-Xent loss function
(Chen et al., 2020):

li = − log
exp(si,j/τ)∑2N

k=1 1[k ̸=i] exp(si,k/τ)
(3.1)

Where si,j is the similarity between the embeddings of the two views of the same image,
and τ is a temperature parameter.

Whilst the general principle of the above approaches is similar, there exist a number
of differences. MoCo (He et al., 2015) introduces a momentum-based encoder updating
strategy and a memory bank to generate unsupervised representations of data. DINO
(Caron et al., 2021) introduces a linear projection head to the encoder, and a decoder
to generate the representations.

As opposed to global representations, more granular approaches have demonstrated suc-
cess, particularly in the medical domain. Given the structural properties of medical
images, superpixel based approaches have demonstrated particular success. SuperCL
(Zeng et al., 2025b) builds from the SimCLR framework by introducing a superpixel-
guided contrastive approach prior to supervised training demonstrating state-of-the-art
results across 8 medical image datasets. Multi-level Asymmetric Contrastive Learning
(Zeng et al., 2025c) uses a similar approach but performs feature-level contrastive learn-
ing across features of differing scales in addition to instance-level contrastive learning.

It is worth noting that most of the aforementioned contrastive learning approaches are
used as a pre-training step for later downstream tasks, particularly in the medical do-
main (Zeng et al., 2025b), rather than as part of, or to enhance the segmentation task
itself. This is in contrast to approaches such as Local Contrastive Loss with Pseudo-
Label based Self-Training (Chaitanya et al., 2021) which uses pseudo-labels produced
by a minimally trained segmentation model on a limited dataset in combination with a
contrastive loss to improve the performance of the segmentation model. What differenti-
ates those approaches to this work is the separation of the supervised and self-supervised
training stages. Here, we join the two stages in this work to form a more complete and
robust approach.

When working with pseudo-labels filtering and / or thresholding of features prior to the
application of a contrastive loss is common in task-specific approaches. Chaitanya et al.
(2021) threshold the Dice Similarity Coefficient (DSC) of pseudo-labels, PBIP (Tang
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et al., 2025) uses adaptive thresholding during the pseudo-label generation process, and
MaskContrast (Gansbeke et al., 2021) uses a confidence threshold to filter foreground
from background features.

Regardless of the approach, contrastive based self-supervised learning provides a strong
foundation for both pre-training and weakly-supervised training. Whilst most of the
work outlined relate to the natural and medical image domain, there have also been suc-
cessful implementations of common contrastive-learning approaches in the histopathol-
ogy domain; CTransPath (Wang et al., 2022a) highlights this with improved results
across multiple downstream tasks by means of contrastive learning.

3.2 Segmentation Approaches

3.2.1 Network Architectures

As outlined in the background, most deep-learning semantic segmentation methods em-
ploy an encoder-decoder architecture. The choice of both the encoder and decoder are
of significant importance to the performance of the model. With the success of FCNs,
Resnets were the dominant backbone model for segmentation tasks for many years (Chen
et al., 2018) (Ronneberger et al., 2015). Recently, transformers-based backbones have
been shown to outperform their CNN counterparts, with the Swin Transformer (Liu
et al., 2021) being particularly successful and now favoured in many segmentation tasks.
We choose to make use of a Swin Transformer backbone for our encoder.

To better counter the spatial information loss inherent with the reducing feature res-
olution of the encoder, atrous decoders such as the DeepLab family of models, have
been shown to be effective, particularly in the context of semantic segmentation (Chen
et al., 2018). Decoders such as DeepLabv3+ (Chen et al., 2018) or that of Mask2Former
(Cheng et al., 2021) have been shown to outperform standard upsampling decoders in
the context of semantic segmentation. We choose to make use of the Mask2Former
pixel-level decoder in this work.

3.2.2 Label-Efficient Methods

As previously discussed, the cost of obtaining pixel-level annotations for segmentation is
high, and the need for label-efficient methods is clear. In order to address this challenge,
various forms of less precise supervision have been used.

Generally, across all computer-vision domains, image-level labels are the most accessible
and easiest to obtain, but lack the spatial information required for fully supervised se-
mantic segmentation (Li et al., 2023; Tang et al., 2025). This provides the motivation for
the use of bounding boxes, scribbles, and point annotations, which are more informative
than image-level labels, but still less expensive to obtain than pixel-level annotations.
Bounding Boxes, highlight regions of interest, often in the form of rectangular image
coordinates, are simpler to create than pixel-level annotations, and are more informa-
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tive than image-level labels as they contain meaningful spatial information (Gansbeke
et al., 2021). Although, these are less suitable for the histopathology domain, as they
do not provide well-defined borders of tissue regions, such as in the case of tumours,
which are often required. Other approaches make use of scribbles, (Lin et al., 2016) and
point annotations, (Bearman et al., 2016), which are more informative than image-level
labels, but still less expensive to obtain than pixel-level annotations. The broad use
of alternative forms of annotation underscore the limiting and often prohibitive cost of
obtaining pixel-level annotations and the need for label-efficient methods.

3.2.3 Foundation Models

The rise of foundation models has also touched upon the segmentation task, with many
models demonstrating strong few and zero-shot performance whilst also being able to
be fine-tuned to the segmentation task.

General purpose foundation models such as CLIP (Radford et al., 2021), DINO (Caron
et al., 2021) and SAM (Kirillov et al., 2023) have been shown to have strong perfor-
mance in few and zero-shot tasks (Zhou et al., 2024). Notably, all of these models
are transformer-based and the emergence of segmentation ability often comes through
modifications to the attention mechanism. The emergent segmentation properties are
strengthened by additional contextual information provided through promptable mod-
els; models such as SAM receive additional context such as weak labels, or example
segmentations which with aid of a prompt encoder lead to more refined masks.

3.2.4 Weakly-Supervised Semantic Segmentation Approaches

The dominant approach for weakly-supervised semantic segmentation is the use of Class
Activation Maps (CAMs) to generate pseudo-labels for the segmentation task. Intro-
duced by Zhou et al. (2015), CAMs apply the linear classifier weights to the last feature
map of the network, prior to GAP, to reveal the importance of each pixel in the feature
map for the classification task. Importantly, Zhou et al. (2015) demonstrate that a net-
work is capable of localizing discriminative image regions for a variety of tasks, despite
only being trained on the global classification task.

There have been various attempts at improvements to the CAM method, such as Grad-
CAM (Selvaraju et al., 2019), which removes the need for pooling and the linear classifier,
and instead uses the gradient of the logits with respect to the features to generate the
CAMs. Other attempts follow the same general approach, but use different methods
to generate the CAMs such as HiResCAM (Draelos and Carin, 2021) or EigenCAM
(Muhammad and Yeasin, 2020). The downside of these methods is that they are com-
putationally expensive

A common issue with most CAM approaches is partial activation, where only the most
discriminative regions of the image are activated. This is because the classification
objective doesn’t necessarily require recognition of the entire object for a given class
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Figure 3.1: Example CAMs for Tumor-associated Stroma (left) and Tumor Epithelial
regions (right).

(Kang et al., 2025). This issue provides the motivation for the use of additional methods,
to either enforce the activation of the entire object by the classification objective, or to
attempt to broaden the activation of the object by the discriminative regions. In the
subsections below, we outline various approaches to address the issue of partial activation
and / or pseudo-label refinement.

Prototype-based Approaches

Prototype-based approaches make use of a set of class-specific prototypes to generate
the pseudo-labels for a segmentation task. Simple prototype networks learn a non-linear
transformation of the input data from which the mean across a given class can be taken
to create a prototype Liu et al. (2024b). The prototypes can then be applied to the
feature maps of the network via a similarity metric, such as cosine similarity, to generate
the pseudo-labels for a segmentation task.

More complex prototype-based approaches, such as Self-Supervised Image-Specific Pro-
totype Exploration (SIPE) (Chen et al., 2022a) directly learn the prototypes in a self-
supervised manner, by training both the classification and segmentation tasks. SIPE
uses the CAMs generated from the classification task to select features, generated in
addition to the classification features, which best align with the class-specific regions of
the image to generate the prototypes. The segmentation masks generated from the pro-
totypes are then applied in a self-supervised manner, minimising the absolute difference
between the generated masks and the CAMs. This approach has been shown to help
address the issue of partial activation outlined above.

One benefit of the use of prototypes is that the similarity metric used to generate the
pseudo-labels can be tailored to the specific task at hand. This can include rewarding
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foreground-background dissimilarity such that the less-disciminative regions of CAMs are
artificially activated to help address the issue of partial activation (Kang et al., 2025),
(Ahmadi and Kasaei, 2024) (Chen et al., 2022a). The creation of unbiased activation
maps (UAMs) (Kang et al., 2025) is a specific example of this, where the creation of the
pseudo-labels is guided by the foreground-background dissimilarity.

Attention-based Approaches

With the advent of the ViT, attention-based approaches have grown in popularity for
addressing the issue of partial activation. The unchanging size of the attention maps
across transformer blocks allows for their aggregation into a single feature map which
considers features across various scales. This is a particular advantage when compared to
CNN-based approaches which generally only consider the highest level features located
in the last layer of the network. This has been demonstrated to increase the quality of
the CAMs and thereby the performance of the segmentation task. One such model which
makes use of this approach is TransCAM (Li et al., 2023) which combines traditional
CNN-based CAMs with the average of the attention maps to generate improved CAMs
in a Conformer network, producing state-of-the-art results on segmentation tasks. The
SWT-Former (Ahmadi and Kasaei, 2024) combines SIPE (Chen et al., 2022a) with the
Swin Transformer (Liu et al., 2021) to generate segmentation masks that compete with
or better state-of-the-art methods on the PASCAL VOC 2012 dataset.

Post-Processing Methods

In order to approve the quality of segmentation masks, the literature highlights var-
ious post-processing methods are often used. Perhaps the most popular, the use of
Dense Conditional-Radiance Fields (DenseCRF) (Krähenbühl and Koltun, 2012) has
been shown to be effective in improving the quality of segmentation masks by incorpo-
rating the spatial information of the image into the masks. Affinity-based methods, such
as AffinityNet (Ahn and Kwak, 2018), make use of the affinity between pixels to help
refine the pseudo-labels for a segmentation task.

Inherently, these methods rely on the quality of the initial pseudo-labels, and as such,
prioritising the quality of the initial pseudo-labels is key. Furthermore, Kang et al.
(2025) demonstrate that such methods which have demonstrated strong performance on
the natural image domain can degrade the performance of pseudo-labels when applied
to the histopathology domain. As such, we focus on producing pseudo-labels which are
as high quality as possible, rather than using post-processing methods in this work.

3.3 Weakly Supervised Semantic Segmentation Approaches
for Histopathology

Given the specialised nature of the histopathology domain, there are various approaches
specific to the domain. Generally, the core methodology is to train a backbone model
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on the classification task using a Multi-Label Soft Margin Loss (MLSM) and then use
the feature maps from the backbone to generate the pseudo-labels for the segmentation
task (Han et al., 2021), (Tang et al., 2025), (Chan et al., 2019).

The point of difference between approaches lies in the various methods used to generate
the pseudo-labels for the segmentation task. Earlier approaches such as HistoSegNet
(Chan et al., 2019) primarily used CAM-based methods with standard segmentation
post-processing. These methods were susceptible to noise and over-activation of the
most discriminative regions and performance was thus limited. To address these issues,
more complex methods often integrate the feature maps from multiple layers of the
backbone to create more powerful hierarchical features. Multi-Layer Pseudo-Supervision
(MLPS) (Han et al., 2021) and PBIP (Tang et al., 2025) are examples of this within the
Histopathology domain.

Prototype-based approaches to generating pseudo-labels have also seen success in histopathol-
ogy tasks. By generating prototypes corresponding to tissue types, these methods use
the similarity between the prototypes and the feature maps to generate the pseudo-labels
for the segmentation task (Kang et al., 2025). It is worth nothing that these approaches
often use an additional intermediary step, such as K-Means in the case of Kang et al.
(2025) to refine the feature maps. This differs from the approach outlined in this work
which treats CAM refinement as a part of the training process.

The rise of multi-modal approaches across machine learning, thanks to models such
as CLIP (Radford et al., 2021), with increased performance has invited application to
the Histopathology domain. Through the injection of text and label annotations using
MedCLIP (Wang et al., 2022b) and ClinicalBERT (Huang et al., 2020) respectively and
an attention mechanism, TPRO demonstates previously state-of-the-art performance
on the LUAD-HistoSeg and BCSS-WSSS datasets (Zhang et al., 2023). Their approach
differs from that which is outlined in this work through the introduction of two additional
encoders and an additional text-prompting mechanism.

The strongest performing approaches such as Kang et al. (2025) and Han et al. (2021)
often then introduce the additional step of self-supervised learning by using the pseudo-
labels as the target masks for a fully supervised training approach. Most approaches
use the DeepLabv3+ decoder (Chen et al., 2018) as the decoder. Whilst a standard
CrossEntropy or Dice loss are often used, certain approaches such as (Kang et al., 2025)
attempt to consider the uncertainty of the pseudo-labels to improve the performance
of the model by introducing the confidence of the CAMs into the loss calculation. We
explore the use of this Noise Reduced Loss in this work.

Kang et al. (2025), Zhang et al. (2023) and Han et al. (2021) all evaluate the perfor-
mance of their approaches on the LUAD-HistoSeg and BCSS-WSSS datasets, providing
motivation for the use of these datasets in this work. Additionally, Kang et al. (2025)
compare the performance of their approach with various other methods, including results
of both CAMs, and the additional fully supervised training approach stage to which we
make reference. For convenience, these results can be found in Appendix A
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3.4 Foundation Models for Histopathology

The strong performance and broad applicability of foundation models has seen them
used across wide-ranging applications. With various, performance proven models such as
CLIP (Radford et al., 2021), DINO (Caron et al., 2021), DINOv2 (Oquab et al., 2023),
and SAM (Gurcan et al., 2009), now available, there is a growing interest across the
literature in their applicability to the Histopathology domain. The application of such
models highlight intrinsic difficulties of the histopathology domain, reveal techniques for
extracting strong empirical performance from foundation models, whilst underscoring
the need for specialist models and approaches remains.

In recognition of the strength of CLIP and other text-image alignment models as well as
the intrinsic link between reports and images that exist in the histopathology domain,
CLIP-inspired models such as MedCLIP (Wang et al., 2022b) have garnered significant
interest in the Histopathology domain. As already outlined, there exist three main
problems that make these models somewhat unsuitable for the Histopathology domain.
Firstly, the cost of obtaining an appropriate amount of data is high, given the necessity
of obtaining both image and text annotations. Secondly, the histopathology domain
lacks much of the publicly available text annotations that are available for other medical
images such as radiology. Thirdly, histopathological images are often of a significantly
increased size when compared to other medical images such as radiology, which can make
the use of these models more difficult (Gurcan et al., 2009).

In recognition of these challenges, image-only models such as Virchow (Vorontsov et al.,
2024) and HIPT (Chen et al., 2022b) have been developed. Whilst these models are
not specifically designed for the segmentation task, they provide a foundation for the
development of specialist models for the histopathology domain. Such models are large
(632 million and 10,000,000 parameters respectively) and require significant amounts of
data to train. Virchow is trained on 1.5 million hematoxylin and eosin stained WSIs
whilst HIPT is trained on 10,000 WSIs in addition to 408,218 4096x4096 patches and
104 million 256x256 patches. Following the trend in foundation models, both models
are transformer-based and are trained using the DINO algorithm (Caron et al., 2021)
highlighting the affinity between transformers and self-supervised learning. Of interest
are their approaches to the large image sizes inherent to the histopathology domain.
Unsurprisingly, both models make use of patch-based training, although HIPT extends
this approach by training on patches of varying sizes to create a hierarchical represen-
tation of the image. Unfortunately, neither model has been applied to segmentation
tasks, although HIPT provides some segmentation ability through visualisation of the
self-attention maps of the model which can assist in interpreting classification results.

Whilst the above approaches adapt foundation models to the segmentation task, SAM
provides a foundation for zero-shot histopathology segmentation with few modifications
such as PathoSAM (Griebel et al., 2025), and WSI-SAM (Liu et al., 2024a). Such models
demonstrate strong performance on their respective segmentation tasks in a zero-shot
context, although they still fall behind specialist state-of-the-art models. To attempt to
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overcome this, the production of industry specific foundation models for segmentation
such as MedSAM (Ma et al., 2024) have been show to consistently outperform state-of
the-art segmentation foundation models whilst achieving similar performance to special-
ist models. Despite the strong performance of these models, they generally fall behind
specialist state-of-the-art models, particularly in the histopathology domain as demon-
strated by Kang et al. (2025). Therefore, motivation for furthering the development and
performance of specialist models, such as that which is explored in this work, remains.
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Chapter 4

Weakly Supervised Semantic
Segmentation for Histopathology.

This chapter contains the explored approaches of our work across varying levels of su-
pervision for the segmentation task. We first start by foregrounding the experimental
setup, including the model structure and various other elements. We then outline the
training approaches we explore across the different levels of supervision. The results of
the experiments are presented in Chapter 5.

4.1 Model Architecture

In this section, we outline the building blocks of the model architecture used in our
experiments.

4.1.1 Encoder Backbone

The primary backbone for the model is the Swin Transformer Liu et al. (2021) with
a window size of 7 × 7 and a patch size of 4 × 4. We make use of the Imagenet-
22k pre-trained model for which the weights can be found here. Feature maps can be
extracted from various layers of the encoder. In this work, we extract feature maps
from the first, second, third, and fourth blocks of the Swin Transformer of resolutions
(56× 56, 28× 28, 14× 14, 7× 7).

To produce classification logits, for the weak supervision tasks, we append a final pro-
jection head to the decoder, in the form of a 1 × 1 convolutional layer to produce the
class logits for each feature. This is further outlined in Section 4.3.
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Figure 4.1: Overview of the Mask2Former pixel-level module used as the model structure
in our experiments.

4.1.2 Encoder-Decoder

Inspired by Cheng et al. (2022), we use the pixel-level module of the Mask2Former
model, which consists of the encoder backbone and a Feature Pyramid Network (FPN)
(Lin et al., 2017) based decoder. For simplicity, we make use of the transformers

python library (Wolf et al., 2020) to load the Mask2Former model. As the pixel-level
module of the Mask2Former produces pixel embeddings, we append a final projection
head to the decoder, in the form of a 1×1 convolutional layer to produce the class logits
for each feature. We use an embedding dimensions of 256.

4.1.3 Augmentations

We perform standard data augmentations to the images throughout the training pro-
cess. This includes random horizontal and vertical flips and normalisation. Additional
transformations performed as part of the unsupervised pre-training process are outlined
in Appendix A.3.

4.2 Unsupervised Training

As is common in the literature, we start by perform an unsupervised pre-training on
a large dataset of unannotated images. The goal is this stage is to learn, through a
pre-text task, a rich feature space that can later be fine-tuned for the segmentation task
downstream. As shown in Fig. 4.2, we make use of data augmentations to generate a
diverse set of views of the same image.
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Figure 4.2: Overview of the unsupervised training approach for the downstream segmen-
tation task.

Following Zeng et al. (2025a), we use a contrastive loss based approach to pre-train our
model. As is common in unsupervised pre-training, we make use of data augmentations
to generate a diverse set of views of the same image. In particular, for each image, we
generate two additional views. The first view is a visual transformation of the origi-
nal image, with no spatial transformations applied. The second view is generated by
applying a random spatial transformation to the original image.

Use the augmented views, we can define a contrastive loss with the goal of pushing the
embeddings of the augmented views of the same image closer together, while pushing the
embeddings of the augmented views of different images apart. This can be broken down
into two components: An inter-image contrastive loss and an intra-image contrastive
loss. For both the inter-image and intra-image contrastive losses we make use of the
NT-Xent loss function 3.1.2. (Zeng et al., 2025a).

Combining the inter-image and intra-image contrastive losses, we can define the total
contrastive loss as:

Ltotal = Lintra + λinterLinter (4.1)

Where λinter is a weighting factor for the inter-image contrastive loss. We set λinter to
0.5 as recommended by Zeng et al. (2025a).
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Figure 4.3: Examples of augmentations used in unsupervised contrastive pre-training:
(left) original image, (middle) visual-only augmentation, and (right) spatial
augmentation.

4.3 Weakly Supervised Training (Stage 1)

In this section, we outline the approach for training the model on the classification task
in line with the literature. We outline the classification objective, the CAM generation
process (including various modifications to the CAM method), as well as our Pseudo-
Supervised Contrastive Loss (PSCL) approach. The process in its entirety can be seen
in 4.4.

Figure 4.4: Overview of the weakly-supervised training approach for the segmentation
task.
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Our total loss function is defined as:

Ltotal = Lmlsm + λpsclLpscl (4.2)

where λpscl is a weighting factor for the PSCL loss. We conduct ablation studies on the
weighting of the PSCL loss and find that the performance of the model is maximised
when the lambda is set to 0.1.

4.3.1 Classification

We start the weakly-supervised training by training the model on the patch-level labels.
We make use of Swin Transformer Resnet38 encoder backbones. We append a 1x1
convolutional layer to the output of the last layer of the encoder with n output channels
where n is the number of classes. To train for the classification task, we make use of
the Multi-Label Soft Margin Loss (MLSM) loss function, applying GAP to the output
of the 1x1 convolutional layer to produce a n dimensional vector.

Lmlsm = − 1

N

N∑
i=1

y[i] log(
1

1 + e−x[i]
) + (1− y[i]) log(

exp(−x[i])

1 + e−x[i]
)

where y[i] is the one-hot encoded label for the ith class, and x[i] is the class score for
the ith class.

4.3.2 CAM Generation

Similar to Han et al. (2021), we use the CAM method to generate the useful feature
maps for the segmentation task. For a given class i, we have that the CAM at a is
defined as:

CAMi(x) =
ReLU(Ai)

maxReLU(Ai)

Ai = wT
i f

(4.3)

where f is the feature map for class i, and wi is the weight vector from the 1x1 convo-
lutional layer.

Background Seeding

One issue with the CAM method is that identification of the background class is not an
objective to which the model can be trained as it is not included in the labels. Various
methods have been proposed to address this issue, but we focus on background seed-
ing. Inspired by Kang et al. (2025), we perform colour thresholding and morphological
operations on the image to create a binary map of background regions which is then
concatenated onto the CAMs to produce n + 1 CAMs.To refine this mask and remove
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noise, we apply a morphological operation specifically, the remove small objects func-
tion from skimage which eliminates small, isolated regions that are unlikely to be true
background. The resulting binary map highlights the main background areas, which
is then concatenated with the class activation maps (CAMs) to provide an additional
background channel for segmentation. We find that a min size of 200 is most effective
for the LUAD-HistoSeg dataset and 600 for the BCSS-WSSS dataset. We visualise the
background seeding in Figure 4.5.

Figure 4.5: Background seeding example. Left: original image patch; Right: generated
background seed highlighting background regions.

Gating Mechanism

In order to improve the quality of the generated pseudo-labels, we introduce a gating
mechanism which takes the classification score and the CAMs to remove CAM responses
for which the model is not confident in its classification. This is from the premise that
the model’s ability to classify the image is stronger than its ability to segment the image.
Inspired by Han et al. (2021) we use the following gating function:

gn(x) =

{
1 if cn(x) > τ

0 otherwise
(4.4)

For each class n, we set τ to 0.8 for all experiments. We concatenate a constant back-
ground 1 into the classification scores to ensure that the background is always included in
the segmentation task. Combining the gating function with the CAMs, we can generate
the gated CAMs for each class n as:

CAMn(x) = gn(x) · CAMn(x) (4.5)
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Pseudo-Supervised Contrastive Loss (PSCL)

A significant challenge in weakly-supervised object localization is the phenomenon of
partial-activation, where a model’s Class Activation Maps (CAMs) fail to identify
the entire extent of an object, instead focusing on the most discriminative regions. To
address this, we introduce the Pseudo-Supervised Contrastive Loss (PSCL), a novel
approach that encourages the model to learn a more semantically consistent and sepa-
rable feature space. This loss operates at a pixel-level, using the model’s own CAMs to
generate a set of reliable pseudo-labels for feature-map supervision.

Figure 4.6: Overview of the pseudo-supervised contrastive loss approach. We make use
of the CAMs as pseudo-labels to create a more separable feature space.

The core of our approach is the application of a supervised contrastive loss to the feature
maps f ∈ RC×H′×W ′

, where C, H ′, and W ′ are the number of channels, height, and
width, respectively. The supervision signal is derived from the CAMs c ∈ RN×H×W ,
where N is the number of classes. We define the pseudo-label for each pixel as the
class with the maximum activation value, effectively generating a pixel-wise label map
l = argmax(c).

However, relying solely on argmax(c) can introduce noisy labels from low-confidence re-
gions. To mitigate this, we filter out unreliable pixels by applying a confidence threshold
τ . Pixels where the maximum CAM value is below this threshold are excluded from the
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4 Weakly Supervised Semantic Segmentation for Histopathology.

loss calculation. The pixel-wise pseudo-label is thus defined as:

l =

{
argmax(cij) if max(cij) > τ

−1 otherwise
(4.6)

where cij is the CAM vector for pixel (i, j). In our implementation, we set τ to 0.25.
The feature embeddings are extracted where the pixel-wise pseudo-label is not −1.

F̂ = { fij | lij ̸= −1 } (4.7)

The extracted features along with their pseudo-labels are then fed into the standard
supervised contrastive loss.

Lsupcon = − 1

|F̂ |

∑
i∈F̂

1

|P (i)|
∑

p∈P (i)

log
exp

(
sim(zi,zp)

τ

)
∑

a∈F̂ , a ̸=i

exp
(
sim(zi,za)

τ

) (4.8)

where P (i) is the set of pixels with the same pseudo-label as i.

Pseudo-Label Generation

To improve the quality of the pseudo-labels produced for the second stage of training,
we first perform the background seeding method outlined above, where a thresholding
mechanism is used to identify background regions followed by a morphological opera-
tion (specifically, the remove small objects function from skimage) to eliminate small
objects. Instead of concatenating the background mask to the CAMs, we generate the
final pseudo-labels by taking the argmax of the CAMs (per pixel), add 1 to shift class
indices, and then multiply by the complement of the background mask, as shown in the
equation below. Additionally, we gate the CAMs by setting any non-present class to 0,
using the patch one-hot labels from the training set of the respective datasets.

l̂ = [argmax(CAMs) + 1] · (1− bkg) (4.9)

4.4 Weakly Supervised Training (Stage 2)

As is common in the literature, we follow a two-stage training approach. In the second
stage, we take the pseudo-labels produced by the first classification training stage and
train the model, including the decoder, on the segmentation task as if it were fully
supervised. This is outlined in Figure 4.7.
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Figure 4.7: Overview of the weakly-supervised training approach for the segmentation
task.

Noise Reduced Loss

Following Kang et al. (2025), we make use of the noise reduced loss (NR Loss) whilst
training on the pseudo labels. This loss considers the uncertainty of the pseudo-labels
when penalising the model for incorrect predictions to account for the potential for
incorrect pseudo-labels.

We first generate a confidence score for a given pixel by dividing the CAM value by the
sum of the CAM values for all classes.

cn(x) =
CAMn(x)
n∑

i=1
CAMi(x)

(4.10)

We apply the confidence score to the standard BCE loss 2.17.

Lnr = −
n+1∑
i=0

ci(x) (yi log(Pi(x)) + (1− yi) log(1− Pi(x))) (4.11)

where yi is the one-hot encoded label for the class i, and Pi(x) is the Gumbel Softmax
probability for the class i.
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4.4.1 Datasets

We follow the literature for weakly-supervised histopathology segmentation, and use the
following datasets:

• LUAD-HistoSeg - A dataset of 17,285 224x224 image patches from WSIs at 10x
reoslution from patients with lung adenocarcinoma. There are 16,678 patches with
global labels in the training set and 300 and 307 patches with pixel-level labels in
the validation and test sets respectively. There are four labels in the dataset:
Tumour Epithelial, Tumour Associated Stroma, Necrosis, and Lymphocytes (Han
et al., 2021)

• BCSS - WSSS - A dataset of 31,826 224x224 image patches from WSIs at 40x
resolution from patients with breast cancer. It is made up of 23,422 patches with
global labels in the training set, and 3,418 and 4,986 patches with pixel-level labels
in the validation and test sets respectively. There are 5 labels in the dataset:
Tumour, Stroma, Lymphocytic Infiltrate, Necrosis, and Other (Han et al., 2021)
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Chapter 5

Evaluation

In this chapter, we evaluate the performance of the proposed methods. We start by
outlining the implementation details before evaluating the performance of the models
across the different experimental stages.

5.1 Implementation Details

5.1.1 Hardware Setup

All experiments are conducted on an Ubuntu 24.0.1 machine with an NVIDIA GeForce
RTX 3090 GPU with 24GB of VRAM and 64GB of RAM.

5.1.2 Software Setup

All experiments are conducted using the PyTorch framework with a CUDA version of
12.4. Table 5.1 shows the hyperparameters used for the training of the models.

Table 5.1: Training hyperparameters used across different experimental stages.

Parameter Stage 1 Stage 2 Unsupervised

Optimizer SGD AdamW AdamW
Learning Rate 0.1 0.0001 0.0001
Epochs 5 20 20
Scheduler Polynomial Decay – –
Batch Size 16 32 6
Loss Function MLSM + PSCL NR / CE NT-Xent

We make use of the SupConLoss implementation from the pytorch-metric-learning li-
brary (Musgrave et al., 2020). Our distance metric is cosine similarity.
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5.2 Weakly Supervised Training (Stage 1)

We demonstrate that our method is able to generate high quality pseudo-labels with
only weak supervision on the classification task. Additionally, we demonstrate that our
novel PSCL approach significantly increases performance across both datasets and helps
to address the issue of partial-activation that CAMs are susceptible to. Performance of
the model is competitive with state-of-the-art methods, achieving a rank of second on
the BCSS-WSSS dataset.

We include our best results for Swin and ResNet50 backbone architectures in Table
5.2 and Table 5.3 for the LUAD-HistoSeg and BCSS-WSSS datasets respectively. We
additionally examine various other components of the approach, including the impact of
the PSCL, the background seeding mechanism, and the impact of the weighting of the
PSCL in further detail.

Table 5.2: Overall and per-class IoU performance (%) of weakly supervised models on
LUAD-HistoSeg dataset.

Model TE NEC LYM TAS mIoU fwIoU

Swin (Ours) 67.49 72.39 69.82 65.28 68.75 67.35
ResNet50 (Ours) 52.02 35.44 50.22 51.29 56.44 50.27

Table 5.3: Overall and per-class IoU performance (%) of weakly supervised models on
BCSS-WSSS dataset.

Model TUM STR LYM NEC mIoU fwIoU

Swin (Ours) 78.66 67.05 49.11 63.96 64.70 70.13
ResNet50 (Ours) 69.94 57.64 48.26 50.11 56.49 61.68

5.2.1 Comparison to State of the Art

We find that our method performs below recent state-of-the-art methods on the LUAD-
HistoSeg dataset, but is competitive on the BCSS-WSSS dataset. Table 5.4 and Table
5.5 show the top 3 state-of-the-art methods and our approach on the LUAD-HistoSeg
and BCSS-WSSS datasets respectively. The full state-of-the-art results can be found in
Appendix A. While our method is competitive on BCSS-WSSS, achieving second place,
the lower score in the low-frequency LYM class suggests a limitation in handling class
imbalance. Nevertheless, the strong performance across high-frequency and clinically
relevant classes like TUM and STR validates PSCL’s success in broadening CAM ac-
tivation to capture the full extent of key tissue regions, directly addressing the core
problem of partial activation
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Table 5.4: Top 3 state-of-the-art methods and our approach on LUAD-HistoSeg dataset
(mIOU %).

Method TE NEC LYM TAS fwIoU mIoU

UAM (Kang et al., 2025) 76.24 80.43 76.28 72.02 75.38 76.24
TPRO (Zhang et al., 2023) 74.82 77.55 76.40 70.98 73.81 74.94
MLPS (Han et al., 2021) 71.72 76.27 73.53 67.67 70.80 72.30
Swin (Ours) 67.49 72.39 69.82 65.28 67.35 68.75

Table 5.5: Top 3 state-of-the-art methods and our approach on BCSS-WSSS dataset (
mIOU %).

Method TUM STR LYM NEC fwIoU mIoU

UAM (Kang et al., 2025) 78.97 71.72 58.16 63.59 72.20 68.11
TPRO (Zhang et al., 2023) 77.18 63.77 54.95 61.43 68.55 64.33
MLPS (Han et al., 2021) 70.76 61.07 50.87 52.94 63.89 58.91
Swin (Ours) 78.66 67.05 49.11 63.96 70.13 64.70

5.2.2 PSCL

In this section we thoroughly explore the performance of the model with and without
the PSCL. PSCL successfully addresses the core issue of partial-activation, leading to a
significant increase in pseudo-label quality and overall performance across both datasets.
The best results for PSCL are shown in Table 5.6 and Table 5.7.

Table 5.6: Performance comparison with and without PSCL on LUAD-HistoSeg dataset.

Model TE NEC LYM TAS mIoU fwIoU

Swin (Baseline) 63.98 70.46 70.04 62.92 66.85 64.88
Swin + PSCL 66.70 67.90 71.97 64.69 67.81 66.75

Table 5.7: Performance comparison with and without PSCL on BCSS-WSSS dataset.

Model TUM STR LYM NEC mIoU fwIoU

Swin (Baseline) 73.33 63.90 48.55 57.90 60.92 66.18
Swin + PSCL 76.82 66.92 50.72 61.82 64.07 69.36

The introduction of a contrastive loss was based on the premise that the feature space
would become more separable, with less discriminative features becoming more discrim-
inative and thus addressing the problem of activation that CAMs are susceptible to.
Whilst the increase in mIOU across both datasets is evidence of this, we further confirm
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this by examining the CAM activations across the two datasets.

Figure 5.1: CAM activation for BCSS-WSSS dataset.

Clearly, Figures 5.1 and 5.2 show that, excluding the NEC class from the BCSS-WSSS
dataset, PSCL leads to an increased number of high activation CAMs when compared
to the baseline CAMs. As the CAMs are generated relative to the maximum activation
for a given class, this provides direct evidence that PSCL increases the activation of
previously low activated features, thereby addressing the issue of partial-activation that
CAMs are susceptible to. Whilst it is perhaps evident that PSCL achieves this by
clustering features, we further confirm this by analysing the inter-class feature distance.
In both datasets, we see the addition of the PSCL leads to an increased density of high
similarity features when compared to the baseline CAMs.

As already outlined through comparison with SOTA methods, the BCSS-WSSS dataset
benefits from the PSCL approach more significantly than the LUAD-HistoSeg dataset.
One possible reason for this is the difference in dataset size. The BCSS-WSSS dataset
is around 40% larger than the LUAD-HistoSeg dataset.

Qualitative Analysis

The performance increases that PSCL achieves are not solely quantitative; PSCL results
in significantly more refined segmentation masks and class activations when compared to
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Figure 5.2: CAM activation for LUAD-HistoSeg dataset.
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Figure 5.3: Intra-class feature distance for BCSS-WSSS dataset.
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Figure 5.4: Intra-class feature distance for LUAD-HistoSeg dataset.
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the baseline approach. This can be seen in Figures 5.5 and 5.6. Additional visualisations
can be found in Appendix A.3.

Figure 5.5: Comparison of pseudo-labels between baseline and PSCL on the LUAD-
HistoSeg dataset.

We highlight that the PSCL tends to expand large activated regions of the image whilst
eliminating small activated regions. This is in line with the finding that the PSCL
tends to increase the activation of previously poorly activated features. Although, the
expansion of activated regions can result in over-activation in some cases, likely as a
result of the interaction between the interpolation from the CAMs to the true image
size and the PSCL implementation; Even without PSCL, activated regions of the image
are inherently likely to be larger than their true image counterparts. The addition
of PSCL, which we have shown is able to increase the activation of previously poorly
activated features resulting in a higher average activation, potentially exacerbates this
issue. When contrastive loss is applied to a reduced spatial feature space, the learned
representations become more discriminative between classes, which can cause region
boundaries to strongly activate for multiple classes. As we take the argmax of the CAMs
to generate our pseudo-labels, we don’t consider the nuance of two (or more) classes
being strongly activated in the same region. This boundary sharpening effect may lead
to the loss of nuanced spatial information that exists in the transition zones between
different tissue types.
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Figure 5.6: Comparison of pseudo-labels between baseline and PSCL on the BCSS-WSSS
dataset.
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For further insight, we examine the qualitative activations of the models across both
datasets. The heatmaps can be seen in Figures 5.7 and 5.8.

Figure 5.7: Qualitative activation of the model on the LUAD-HistoSeg dataset.

Across both datasets, we see much more consistent activations for the present classes
when compared to the baseline activations. Region boundaries are more clearly defined
and the contrast between activated regions and non-activated regions within a class is
more pronounced. This trend occurs regardless of whether there are significant differ-
ences in the final pseudo-label, which is further evidence of PSCL addressing the issue
of partial-activation. This is a particularly significant finding. CAMs are often used to
increase the interpretability of a model by providing a way to visualise the decisions of
the model. The need for this interpretability is particularly evident in the medical do-
main, where the decisions of the model could be used to guide clinical decision-making.
The significantly more refined activation heatmaps produced by the PSCL approach are
likely to be more useful for this purpose.

Weighting of PSCL (λPSCL)

We conduct ablation studies on the weighting of the PSCL loss (λPSCL). As shown in
5.9, we find that the performance of the model on both datasets is maximised when the
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Figure 5.8: Qualitative activation of the model on the BCSS-WSSS dataset.
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lambda is set to 0.1. This suggests that the PSCL loss is best applied as a regulariser
for the classification task, rather than as the primary loss function.

Figure 5.9: Effect of PSCL lambda on model performance.

Whilst a weight of 0.1 appears to be a relatively low weighting when compared to the
MLSM loss, but it is worth nothing that the PSCL implementation makes use of an
average non-zero reducer, meaning that the loss produced is not averaged strictly per-
instance, producing a higher loss value overall.

Activation Threshold

As part of the PSCL loss, we apply a threshold to the activation values of the CAMs to
remove particularly poorly activated regions. This is based on the premise that poorly
activated regions may not necessarily be representative of the class to which they are
currently assigned and thereby can work against the convergence of the feature space.
To confirm this, we conduct ablation studies on the activation threshold, as shown in
5.10. We find that across both datasets, the performance of the model is maximised by
smaller thresholds of around 0.1 to 0.25.

If we once again consider the problem of partial-activation, it is not necessarily surprising
that the performance of the model is maximised by lower activation thresholds. The
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Figure 5.10: Effect of PSCL threshold on model performance.
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motivation behind the PSCL loss is to help increase the activation of the poorly activated
regions, which is more difficult to achieve when the threshold is higher. That being said,
a higher threshold can still help progress the separation of the feature space, given that
features of the same class are likely to be similar and thereby have similar gradients with
respect to the loss. Although, their gradient contribution is likely to be decreased as
they produce both higher activation values for the MLSM loss and have increased intra-
class feature similarity. Furthermore, the impact of the threshold is likely to decrease as
training progresses. As aforementioned, and demonstrated in 5.1 and 5.2, the addition of
the PSCL shifts the distribution of the CAMs towards higher activation values, meaning
that fewer features are excluded by the threshold as training progresses.

These results show that our approach is more sensitive to the activation thresholds for
determining ’good features’ than other similar approaches such as Kang et al. (2025)
who demonstrated reduced sensitivity to the activation thresholds. We attribute this to
the use of a contrastive loss which actively guides the clustering of the feature space,
rather than the passive approach of Kang et al. (2025) who simply use it to guide the
selection of features on which they perform K-means clustering.

Background Seeding

Our method proposes the use of a background seeding mechanism to help identify which
regions of the image are likely to be the background. This is imperative to ensure that
the SupConLoss is able to correctly cluster the features of the background class. We
find that simply thresholding the CAMs, with a fixed value, to identify the background
region is not sufficient, and the use of a colour thresholding combined with morphological
operations is more effective.

Table 5.8: Comparison of performance when background class is not included in the
PSCL.

Background Seeding LUAD-HistoSeg BCSS-WSSS
mIoU fwIoU mIoU fwIoU

Activation Thresholding 65.46 63.98 56.52 63.08
Colour Thresholding (Ours) 70.60 69.40 66.22 71.60

Whilst it is clear that the use of a colour thresholding combined with morphological op-
erations is more effective than simply thresholding the CAMS it is an oversimplification
of the problem. Firstly, it relies on the assumption that the background class is solely
the background, which isn’t the case for the BCSS-WSSS dataset. Secondly, the more
accurate background mask is interpolated to the PSCL feature space, which is a reduc-
tion in spatial information and likely leads to an over-activation of the background class.
That is all to say that features that are classified as the background class through this
method are not necessarily the background class. We investigate this by examining the
performance of the model when the background class, and thereby features of this class,
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are not included in the PSCL. We find that the performance of the LUAD-HistoSeg
dataset is significantly reduced, where the performance of the BCSS-WSSS dataset is
slightly improved.

Table 5.9: Comparison of performance when background class is not included in the
PSCL.

Background Included LUAD-HistoSeg BCSS-WSSS
mIoU fwIoU mIoU fwIoU

Yes 70.60 69.40 66.22 71.60
No 64.07 63.84 64.60 70.18

Impact on Training

Our integration of PSCL as part of the training process, rather than using a contrastive
loss as a secondary step such as in Chaitanya et al. (2021) is a particularly important
distinction. We underscore this by examing the impact of the PSCL loss when applied
post an initial classification training: We train the model on the classification task for 5
epochs and then introduce the PSCL loss to the model both independently and jointly
with the classification loss. We find that neither approach replicates the performance of
initially training with PSCL combined with the classification loss. Additionally, solely
performing the PSCL loss alone unsurprisingly significantly degrades performance.

Table 5.10: Comparison of performance when background class is not included in the
PSCL.

Post-Training LUAD-HistoSeg BCSS-WSSS
mIoU fwIoU mIoU fwIoU

None (MLSM + PSCL Pre-Training) 68.75 67.35 64.21 70.02
PSCL 23.07 25.61 19.27 24.02
MLSM + PSCL 63.48 61.91 63.82 69.52

Clearly, PSCL is an intrinsic component for corrective feature learning, not a post-
hoc filter. We present two justifications for this effect. Firstly, classification training
inherently optimises for partial activation. The motivating problem of this work is
partial activation, which is well underscored in literature as a significant problem with
traditional CAM based approaches which solely train on the classification task (Han
et al., 2021; Kang et al., 2025). Partially activated features are those which are not
important for the classification task and therefore are unlikely to be labelled correctly.
As such, using the CAMs as pseudo-labels for the contrastive loss is not effective. This
is furthered reinforced by the second justification, that PSCL requires global feature
reorganisation. Such global feature reorganisation is particularly evident in the poor
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performance of the model when trained solely on the PSCL loss; the optimal clustering
of the feature space is not that which best suits the classification task.

Backbone Choice

Under the premise that an ideal methodology is backbone-agnostic, we assess a variety
of backbone models to determine the impact of the backbone choice on the performance
of the model and to confirm whether the PSCL approach is backbone-agnostic. We
find that the Swin Transformer performs significantly better than the ResNet50, with
the SwinV2, and ConvNeXt performing similarly to the Swin Transformer. We suggest
therefore that the transformer-based or inspried backbones are the ideal backbones for
the PSCL approach. Given its ubiquity and ease of use, we validate our hypothesis of
making use of the Swin Transformer as the backbone for the PSCL approach with these
results. The results for each dataset can be found in Tables 5.11 and 5.12.

Table 5.11: Performance comparison of different backbone architectures on LUAD-
HistoSeg dataset.

Backbone TE NEC LYM TAS mIoU fwIoU

Swin 66.70 67.90 71.97 64.69 67.81 66.75
ResNet50 53.60 43.98 57.05 53.08 51.93 53.15
SwinV2 66.31 69.99 74.56 64.80 68.92 67.13
ConvNeXt 67.19 74.34 69.13 66.56 69.31 67.75

Table 5.12: Performance comparison of different backbone architectures on BCSS-WSSS
dataset.

Backbone TUM STR LYM NEC mIoU fwIoU

Swin 76.82 66.92 50.72 61.82 64.07 69.36
ResNet50 70.55 61.08 46.19 54.40 58.06 63.40
SwinV2 78.60 67.61 48.36 60.44 63.75 70.12
ConvNeXt 75.23 65.59 48.07 60.27 62.29 67.77

Whilst the similar performance across the Swin and ConvNeXt models is not notable,
the significantly degraded performance of the ResNet50 model is. This can likely be
attributed to the lack of global context information of the ResNet50 model. Whilst
the Swin Transformer incorporates a similar hierarchical architecture to the ResNet50
model, it importantly includes a self-attention mechanism which allows for the capture
of global context information (Liu et al., 2021). Similarly, the ConvNeXt explicitly
attempts to implement transformer-like features, such as patch-embeddings and depth-
wise convolutions, which allows for the capture of global context information (Liu et al.,
2022). Further confirmation of the importance of these transformer-like architectures
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for SSL is implicitly provided by their success in major SSL tasks such as DINO (Caron
et al., 2021).

5.2.3 Pre-Training

As is common in the literature, we make use of ImageNet (Deng et al., 2009b) pre-trained
Weights for the backbone models in the classification task. Unsurprisingly, we find that
the use of pre-trained weights significantly improves the performance of the model.

Table 5.13: Performance (%) of models pre-trained on ImageNet for classification on
LUAD-HistoSeg and BCSS-WSSS datasets.

Pre-Training LUAD-HistoSeg BCSS-WSSS
mIoU fwIoU mIoU fwIoU

Randomly Initialised 35.62 43.35 44.64 55.11
ImageNet Pre-Trained 68.7 67.35 64.7 70.13

Whilst the use of natural image pre-trained weights is popular in the literature and
does significantly improve model performance, we also examine the impact of producing
histopathology or dataset specific pre-trained weights. Such weights are produced by
means of the unsupervised method described in Section 4.2. In Table 5.14 we investigate
the impact on training on each dataset independently and jointly and find that the
performance of the resulting model is mixed, generally performing worse than the use of
ImageNet pre-trained weights.

Table 5.14: Comparison of performance of models pre-trained on LUAD-HistoSeg and
BCSS-WSSS datasets and joint weights.

Pre-Trained Dataset LUAD-HistoSeg BCSS-WSSS
mIoU fwIoU mIoU fwIoU

LUAD-HistoSeg 62.45 63.18 57.54 64.43
BCSS-WSSS 55.68 59.23 61.41 67.26
Joint 65.89 63.84 63.10 69.27

It may seem that our findings are in contradiction with the literature, which has demon-
strated that unsupervised pre-training on a large dataset of unannotated images can
significantly improve model performance, we suggest this is more indicative of the con-
straints of this approach as implemented in this work. It is well established that pre-
training, particularly unsupervised pre-training benefits significantly from a large varied
dataset Caron et al. (2021); Zeng et al. (2025a); Ciga et al. (2021). Additionally, most
training processes make use of larger batch sizes to increase the input to the contrastive
loss (SimCLR use batch sizes of 256 to 8192 Chen et al. (2020)), which is not the case
in this work; we make use of a batch size of 6 due to hardware constraints.
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At the same we also observe several trends which are in line with the literature. We
find that between the single dataset weights, the performance of the model is maximised
when the model is pre-trained on the downstream dataset. Additionally, we find that
the joint weights perform significantly better than the single-dataset weights. This is
indicative of the increased generalisation of the model through exposure to both datasets.

We also conduct an ablation study on the weighting of the intra-image similarity loss
Lintra on the joint dataset to extend the work of Zeng et al. (2025a). We find only a slight
correlation between the weighting of the inter-image similarity loss and the performance
of the model; the inter-image similarity loss is more important for the BCSS-WSSS
dataset than the LUAD-HistoSeg dataset.

Table 5.15: Comparison of Cross Entropy and Noise Reduced Losses in Stage 2 training
on LUAD-HistoSeg and BCSS-WSSS datasets.

Intra-Image Weighting LUAD-HistoSeg BCSS-WSSS
mIoU fwIoU mIoU fwIoU

0.0 67.18 67.21 63.90 69.34
0.25 62.66 65.14 64.70 70.13
0.5 64.96 65.89 63.10 69.27
1.0 64.17 65.74 64.52 69.97

5.2.4 Gating Mechanism

We find mixed results when examining the impact of gating the CAMs with the classi-
fication scores which suggest that the gating mechanism is not an essential part of the
weakly supervised training approach. Whilst performance on the BCSS-WSSS dataset
is improved, performance on the LUAD-HistoSeg dataset is slightly reduced. We addi-
tionally find that the gating mechanism is not particularly sensitive to the threshold (τ
in Equation 4.3.2) used.

Table 5.16: Ablation study of the gating mechanism on LUAD-HistoSeg: per-class mIoU
and fwIoU for different gating thresholds.

Gating TE NEC LYM TAS mIoU fwIoU

None 67.86 73.18 71.36 65.5 69.48 67.85
Gating (ϵ = 0) 67.49 72.39 69.82 65.28 68.75 67.35
Gating (ϵ = 0.25) 67.22 72.39 69.51 65.10 68.56 67.13
Gating (ϵ = 0.5) 67.13 72.39 69.02 64.93 68.37 66.96
Gating (ϵ = 0.75) 67.11 72.39 68.40 65.13 68.26 66.94

Our findings of minimal to mixed impact from the gating mechanism somewhat con-
tradict that of Han et al. (2021) who find a 0.4% improvement in mIoU when gating
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Table 5.17: Ablation study of the gating mechanism on BCSS-WSSS: per-class mIoU,
overall mIoU, and fwIoU for different gating thresholds.

Gating TUM STR LYM NEC mIoU fwIoU

None 78.05 66.44 48.29 60.62 63.35 69.39
Gating (ϵ = 0) 78.66 67.05 49.11 63.96 64.70 70.13
Gating (ϵ = 0.25) 78.77 67.16 49.27 64.39 64.90 70.26
Gating (ϵ = 0.5) 78.85 67.23 49.41 64.18 64.92 70.33
Gating (ϵ = 0.75) 77.60 66.90 49.80 61.10 63.85 69.70

the CAMs with the classification scores. A possible explanation regarding the mini-
mal and mixed impact of the gating mechanism is that the PSCL’s ability to enforce
high-quality, semantically consistent CAMs may negate the need for traditional post-
processing heuristics like classification-score-based gating, further simplifying the overall
weakly-supervised workflow

In terms of the threshold, it is not particularly surprising that the performance differs
only slightly across the different thresholds given that not performing the gating mech-
anism maintains an mIoU of within 2% of the performance of the gating mechanism.
When we consider the sigmoid function in the gating mechanism 4.3.2 which has the
general purpose of shifting the logits towards 0 or 1 based on the threshold, it becomes
obvious that only classes that are uncertain about their average logits (i.e an average
logit around 0) would be excluded.

To attempt to explain why the gating mechanism performs differently on the two datasets,
we examine the classification performance of the model under the belief that the model
is a better classifier on the BCSS-WSSS dataset than the LUAD-HistoSeg dataset.

Table 5.18: Classification performance (accuracy, F1-score, precision, recall) on LUAD-
HistoSeg and BCSS-WSSS datasets.

Dataset Accuracy F1 Score Precision Recall

LUAD-HistoSeg 94.22 94.46 98.53 90.70
BCSS-WSSS 90.51 88.60 89.90 87.33

Surprisingly, we find that the LUAD-HistoSeg dataset performs better on the classifica-
tion task than the BCSS-WSSS dataset across all metrics. If we turn to the recall and
precision metrics of both datasets, we find that the BCSS-WSSS dataset has a more bal-
anced recall and precision (89.90 and 87.33 respectively), whereas the LUAD-HistoSeg
dataset’s precision outweighs its recall (98.53 and 90.70 respectively). This precision-
recall imbalance suggests that the LUAD-HistoSeg model is overconfident in its negative
predictions. If the classifier wrongly predicts a class is absent (a ”miss” that lowers
recall), the gating mechanism then incorrectly suppresses a valid CAM, creating a false
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negative in the segmentation output and lowering the IoU.
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5.3 Weakly Supervised Training (Stage 2)

Introducing the second stage of training in which we trained the supervised task with
the pseudo-labels produced by the first stage of training, we demonstrate an increase
in performance across both datasets of around 1%. We find that the noise reduced loss
performs similarly to the CrossEntropy loss, with a slight improvement in performance
on the LUAD-HistoSeg dataset.

Table 5.19: Performance comparison between Stage 1 and Stage 2 training on LUAD-
HistoSeg dataset.

Model TE NEC LYM TAS mIoU fwIoU

Swin (Stage 1) 66.70 67.90 71.97 64.69 67.81 66.75
Swin (Stage 2) 70.42 73.67 71.81 66.51 70.60 69.40

Table 5.20: Performance comparison between Stage 1 and Stage 2 training on BCSS-
WSSS dataset.

Model TUM STR LYM NEC mIoU fwIoU

Swin (Stage 1) 76.82 66.92 50.72 61.82 64.07 69.36
Swin (Stage 2) 79.41 68.91 52.63 63.91 66.22 71.60

5.3.1 Qualitative Analysis

Akin to stage 1, we compare the pseudo-labels produced by the model in stage 2 to
those produced by the model in stage 1. We find that the pseudo-labels produced by
the model in stage 2 are slightly more refined, but the difference in quality is not as
significant as the difference between the baseline and the PSCL approach in stage 1.

Generally, we see that the decoder produces higher fidelity, more refined outputs when
compared to its input pseudo-labels. As seen in Figures 5.11 and 5.12, Tissue regions
have jagged edges, more closely follow obvious tissue boundaries and are generally more
accurate in their representation of the true image. This can be attributed to the sig-
nificant increase in resolution of the feature maps that the decoder operates on when
compared to the input pseudo-labels. The decoder receives feature maps from all stages
of the encoder, compared to the input pseudo-labels which are interpolated from the
last stage of the encoder (7 × 7 resolution). It is also evident that the decoder favours
representing larger regions of the image when compared to the input pseudo labels.
Small partitions such as bands or isolate islands of tissue are likely to be ignored or
conglomerated into larger regions. This perhaps

One large benefit of the PSCL approach is the strength of the activations produced
by the model, and thus the explainability of the model. We compare the activation
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Figure 5.11: Comparison of pseudo-labels between Stage 1 and Stage 2 on the LUAD-
HistoSeg dataset.
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Figure 5.12: Comparison of pseudo-labels between Stage 1 and Stage 2 on the BCSS-
WSSS dataset.
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heatmaps between the PSCL and decoder on both datasets in Figures 5.13 and 5.14
and find them to be similar. Although, we visualise that the decoder’s activations are
significantly more noisy, with less contrast between activated and non-activated regions.
One explanation for this is the lack of ReLU activation on the decoder’s output, which
is present in the CAM generation process. This is particularly evident in the classes
which aren’t present for a given image, such as NEC and LYM in Image 1 of 5.13; PSCL
produces entirely zero (and therefore uniform activations). Additionally, we return to
the PSCL shifting the distribution of the activations towards a higher average activation,
resulting in less intermediary activations between the present and non-present classes.

Figure 5.13: Comparison of activations between Stage 1 and Stage 2 on the LUAD-
HistoSeg dataset.

5.3.2 Comparison with State of the Art

In comparing our approach to state-of-the-art methods, we observe similar standings to
the PSCL approach: competitive performance on the LUAD-HistoSeg dataset, and a
second place finish on the BCSS-WSSS dataset. Table 5.21 and Table 5.22 show the
top 3 pseudo-label-based supervised state-of-the-art methods and our approach on the
LUAD-HistoSeg and BCSS-WSSS datasets respectively.
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Figure 5.14: Comparison of activations between Stage 1 and Stage 2 on the BCSS-WSSS
dataset.

Table 5.21: Top 3 supervised state-of-the-art methods and our approach on LUAD-
HistoSeg dataset (%).

Method TE NEC LYM TAS fwIoU mIoU

UAM (Kang et al., 2025) 78.62 82.31 79.03 73.31 76.98 78.31
TPRO (Zhang et al., 2023) 75.80 80.56 78.14 72.69 75.31 76.80
MLPS (Han et al., 2021) 73.90 77.48 73.61 69.53 72.51 73.63
Ours 70.42 73.66 71.81 66.51 69.40 70.60

Table 5.22: Top 3 supervised state-of-the-art methods and our approach on BCSS-WSSS
dataset (%).

Method TUM STR LYM NEC fwIoU mIoU

UAM (Kang et al., 2025) 79.89 74.66 64.71 70.88 75.76 70.88
TPRO (Zhang et al., 2023) 77.95 65.10 54.55 64.96 67.36 65.64
MLPS (Han et al., 2021) 74.54 64.45 52.54 58.67 66.48 62.55
Ours 79.41 68.91 52.63 63.91 71.60 66.22
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5.3.3 Noise Reduced Loss

Despite claims of up to 3% performance gains when using the NR loss (Kang et al., 2025),
we find that the NR loss degrades performance when compared to the CrossEntropy loss.

Table 5.23: Comparison of Cross Entropy and Noise Reduced Losses in Stage 2 training
on LUAD-HistoSeg and BCSS-WSSS datasets.

Loss Function LUAD-HistoSeg BCSS-WSSS
mIoU fwIoU mIoU fwIoU

Cross Entropy 70.60 69.40 66.22 71.60
Noise Reduced 69.15 68.42 63.42 68.96

We argue that the performance degradation likely suggests that the NR loss and other
attempts to account for the uncertainty of the pseudo-labels generated in the first stage of
training may not be aligned with the PSCL approach. The NR Loss aims to account for
the uncertainty of the pseudo-labels generated in the first stage of training by weighting
the loss by the confidence score of the pseudo-labels (Kang et al., 2025). We have already
demonstrated that the PSCL approach shifts the distribution of the activations towards a
higher average activation which addresses the issue of partial activation (Figures 5.1 and
5.2). However, this shift potentially undermines the uncertainty mechanism of the NR
Loss, as the model is now more confident in its predictions, even when its predictions
are incorrect. Furthermore, if we consider the NR Loss equation 4.4, we find that
as the confidence score goes to 1, the loss becomes the standard BCE loss 2.17. The
performance degradation is thus not unexpected, as CE better models the task of picking
one true class per pixel rather than the multi-class classification task for which BCE is
more appropriate (Goodfellow et al., 2016).
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Chapter 6

Concluding Remarks

6.1 Conclusion

This thesis thoroughly investigates the development of weakly-supervised semantic seg-
mentation approaches for histopathology. Driven by the desire to apply machine learning
approaches to aid in diagnosis but confronted by the high cost of obtaining high-quality
per-pixel labels that are required for fully supervised training, we, as do others, turn
to the weak supervision paradigm. By alleviating the need for high-quality per-pixel
labels that are required for fully supervised training, we increase accessibility to ma-
chine learning approaches to aid in diagnosis. This outlines the primary motivation for
this work: to investigate and advance weakly-supervised segmentation approaches as
a means to reduce this annotation burden and increase the accessibility of automated
tissue analysis.

However, the well-documented limitation of partial-activation commonly seen in existing
weakly-supervised segmentation approaches poses a significant challenge to the perfor-
mance of such approaches. As such, we attempted to address this issue by introducing
the Pseudo-Supervised Contrastive Loss (PSCL), a novel loss function that leverages a
model’s own Class Activation Maps as pseudo-labels to learn a more semantically separa-
ble feature space, directly addressing the issue of partial activation. We demonstrate that
PSCL is highly effective in achieving this goal, both qualitatively and quantitatively, and
as a result achieves significant performance gains and more rapid convergence. Of note is
the strong performance of PSCL on the BCSS-WSSS dataset, achieving a second-in-class
performance. Additionally, we provide an overview of the wholistic weakly-supervised
training approach, examining the motivation for and impact of various components of a
Weakly Supervised Semantic Segmentation (WSSS) approach.

The findings of this work validate the effectiveness of weakly-supervised segmentation
approaches in the histopathology domain, confirming that they can achieve strong perfor-

79



6 Concluding Remarks

mance with respect to fully supervised approaches. Furthermore, we provide a tangible
method (PSCL) that can help address a well-known limitation in the field, potentially
making computer-aided diagnosis tools more accessible and faster to develop.

6.2 Future Work

Whilst we have performed a thorough evaluation of the end-to-end approach to weakly-
supervised segmentation, there are a number of potential future directions for this work.

6.2.1 CAMs

A fundamental limitation of CAM approaches in general is their input is lower spatial-
resolution features produced by an encoder and thereby lose spatial resolution. Whilst
this has the possible advantage of not diluting the classification across a significant num-
ber of features it means interpolation of the CAMs to the original image size is required.
The greater the difference in resolution, the greater the loss of spatial information. Some
attempts have been made to increase the resolution of the feature maps by extracting
them from earlier layers of the encoder or using methods such as Grad-CAM to back-
propagate the weak supervision signal to the earlier layers of the encoder.

Further investigation into increasing the resolution of the image features produced by
the encoder could provide a significant improvement in performance. The use of con-
stant feature map resolution ViTs and reducing patch sizes or window sizes in Swin
Transformers could provide a starting point for such an investigation.

6.2.2 PSCL

We identify that the performance of the contrastive loss is dependent on the accuracy
of the pseudo-labels, particularly for the background class. As such, methods which
better identify background regions and can more effectively cluster its features could
provide a significant improvement in performance. Such an approach would ideally
bring the performance gain of the LUAD-HistoSeg dataset in line with that of the BCSS-
WSSS dataset as we identified that identification of the background class is particularly
important for this dataset.

The applicability of the PSCL approach to other datasets with more complex tissues
and larger number of classes should be investigated to assess its generalisation ability.
This is particularly important for datasets with many classes as contrastive losses are
susceptible to the problem of class imbalance. Datasets with more or less background
tissue could help reveal the importance of the background class in the PSCL approach.

Weighting the individual loss for each feature embedding by the confidence score of its
pseudo-label could provide a way to counter for low quality pseudo-labels in addition to
or as a replacement for the confidence threshold. In this way, features which are less
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representative of a class or perhaps incorrectly attributed to a class do not contribute
as much to the movement of the feature space.

6.2.3 Unsupervised Pre-training

Whilst not explored deeply in this work, the use of unsupervised pre-training tech-
niques to assist the weakly-supervised training approach could be further investigated
to improve performance. Given the results of incorporating unsupervised weights into
the weakly-supervised training approach, where we find that in some settings, domain-
specific unsupervised pre-training can match and in some cases better performance from
industry standard pre-trained datasets, we believe this is a promising avenue for further
investigation. Whilst the medical image domain has seen significant investment in pre-
training such as Zeng et al. (2025a), their application to Histopathology has been limited.
As such, the application of unsupervised pre-training techniques to the histopathology
domain could be further investigated to improve performance.
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Appendix A

State of the Art Results

A.1 Stage 1 (Pseudo Labels)

Table A.1: Performance comparison on the LUAD-HistoSeg dataset (%).

Method TE NEC LYM TAS fwIoU mIoU

CAM [9] 69.66 72.62 72.58 66.88 69.59 70.44
Grad-CAM (Selvaraju et al., 2019) 70.07 66.01 70.18 64.76 67.81 67.76
SC-CAM (Chang et al., 2020) 68.29 64.28 62.07 61.79 64.73 64.10
TransWS (Zhang et al., 2022) 65.92 60.16 73.34 69.11 67.67 67.13
MLPS (Han et al., 2021) 71.72 76.27 73.53 67.67 70.80 72.30
SIPE (Chen et al., 2022a) 72.68 62.44 63.86 64.11 64.74 65.77
HAMIL (Yang et al., 2023) 72.82 69.79 69.82 70.96 71.50 70.85
TPRO (Zhang et al., 2023) 74.82 77.55 76.40 70.98 73.81 74.94

UAM (Kang et al., 2025) 76.24 80.43 76.28 72.02 75.38 76.24
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Table A.2: Performance comparison on the BCSS-WSSS dataset (%).

Method TUM STR LYM NEC fwIoU mIoU

CAM [9] 66.83 58.71 49.41 51.12 60.96 56.52
Grad-CAM (Selvaraju et al., 2019) 65.96 56.71 43.36 30.04 58.27 49.02
SC-CAM (Chang et al., 2020) 64.28 56.16 42.87 30.14 56.96 48.36
TransWS (Zhang et al., 2022) 64.85 58.17 44.96 50.60 59.42 54.64
MLPS (Han et al., 2021) 70.76 61.07 50.87 52.94 63.89 58.91
SIPE (Chen et al., 2022a) 72.36 62.88 47.85 48.72 63.46 57.95
HAMIL (Yang et al., 2023) 69.84 59.45 49.98 51.29 62.64 57.64
TPRO (Zhang et al., 2023) 77.18 63.77 54.95 61.43 68.55 64.33

UAM (Kang et al., 2025) 78.97 71.72 58.16 63.59 72.20 68.11

A.2 Stage 2 (Supervised Training)

Table A.3: Supervised performance comparison on the LUAD-HistoSeg dataset (%).

Method TE NEC LYM TAS fwIoU mIoU

Baseline 52.64 58.71 64.59 61.26 57.89 59.30
HistoSegNet (?) 45.59 36.30 58.28 50.82 48.54 47.75
TransWS (Zhang et al., 2022) 57.04 49.98 59.46 58.59 57.41 56.27
OEEM (?) 73.81 70.49 71.89 69.48 71.70 71.42
MLPS (Han et al., 2021) 73.90 77.48 73.61 69.53 72.51 73.63
SIPE (Chen et al., 2022a) 73.14 65.26 66.18 67.23 66.82 67.95
HAMIL (Yang et al., 2023) 73.46 75.83 72.94 70.86 72.60 73.27
TPRO (Zhang et al., 2023) 75.80 80.56 78.14 72.69 75.31 76.80

Ours 78.62 82.31 79.03 73.31 76.98 78.31
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Table A.4: Supervised performance comparison on the BCSS-WSSS dataset (%).

Method TUM STR LYM NEC fwIoU mIoU

Baseline 45.89 51.89 43.54 43.65 48.15 46.24
HistoSegNet (?) 33.14 46.46 29.05 1.91 37.19 27.64
TransWS (Zhang et al., 2022) 44.71 36.49 41.72 38.08 40.61 40.25
OEEM (?) 74.86 64.68 48.91 61.03 66.34 62.37
MLPS (Han et al., 2021) 74.54 64.45 52.54 58.67 66.48 62.55
SIPE (Chen et al., 2022a) 73.29 63.87 49.28 52.49 64.77 59.73
HAMIL (Yang et al., 2023) 71.65 62.37 51.52 54.29 64.95 59.96
TPRO (Zhang et al., 2023) 77.95 65.10 54.55 64.96 67.36 65.64

Ours 79.89 74.66 64.71 70.88 75.76 70.88

A.3 Unsupervised Pre-training Transformations

Contrastive Loss Type Transformations Applied

Intra-Image
• RandomAdjustSharpness(factor=2, p=0.5)

• RandomAutocontrast(p=0.5)

• RandomEqualize(p=0.5)

• GaussianBlur(kernel size=3, sigma=(0.1,

2.0))

• ColorJitter(brightness=0.2,

contrast=0.2, saturation=0.2, hue=0.1)

Inter-Image
• RandomHorizontalFlip(p=0.5)

• RandomVerticalFlip(p=0.5)

• RandomRotation(degrees=(-90, 90))
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Figure A.1: BCSS Baseline Results
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A.3 Unsupervised Pre-training Transformations

Figure A.2: LUAD Baseline Results
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A.3.1 PSCL

Figure A.3: BCSS PSCL Results
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Figure A.4: LUAD PSCL Results

90
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Figure A.5: BCSS Pseudo Label Results
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Figure A.6: LUAD Pseudo Label Results
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