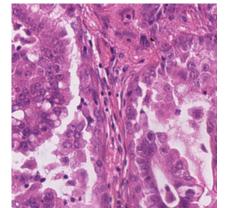
# Weakly Supervised Semantic Segmentation for Histopathology

Felix O'Brien - Supervised by Dr Benjamin Mashford The Australian National University

# **Motivation Problem**





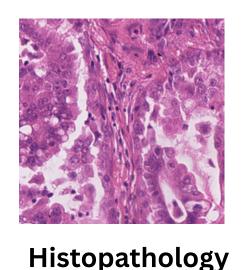




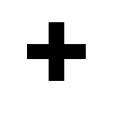
**Semantic Segmentation** Diagnosis of disease via Machine-Learning approaches to identify tissue regions

**Annotation Burden** Masks are large and require expertise

### **Solution (Weakly Supervised Semantic Segmentation)**



tissue microscopy



[1001]

**Global Patch Labels** 

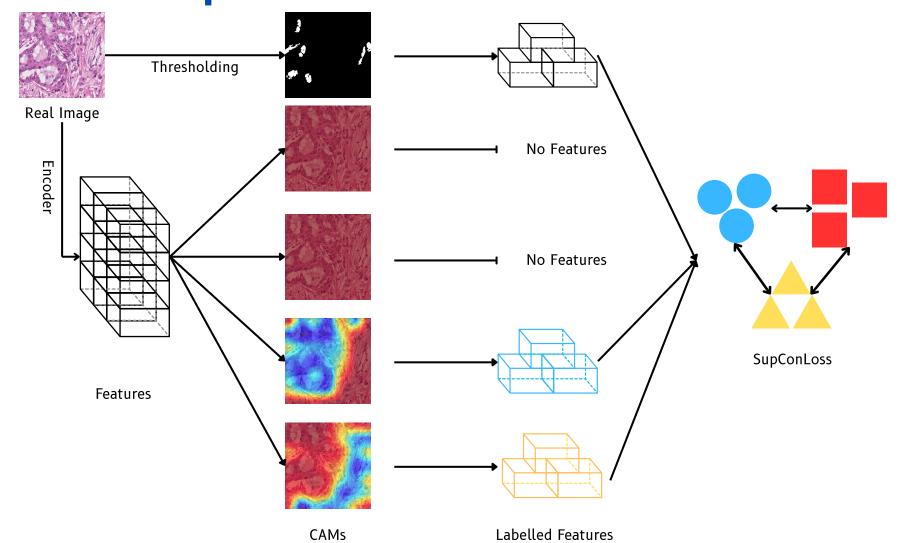


**Class Activation Maps** (CAMs)

#### **Limitations of Existing Work**

- 1) CAMs suffer from Partial-Activation: Only the most discriminative regions of an images are highlighted.
- 2) Existing solutions often require many steps: Complex work-arounds often involve many steps with additional approaches rather than it being an emergent property of a trained model.

## **Pseudo-Supervised Contrastive Loss (PSCL)**



1) Collect Features Extract features from last stage of encoder

2) Filter Features Label features with pseudo-labels and remove poor responses

3) Contrast Features **Apply Supervised Contrastive Loss** (SupConLoss)

## Method Encoder Class Scores Backbone $\mathcal{L} = \mathcal{L}_{ ext{MLSM}} + \lambda_1 \mathcal{L}_{ ext{PSCL}}$ **Thresholding** Loss Weighting Argmax Background Pseudo Label

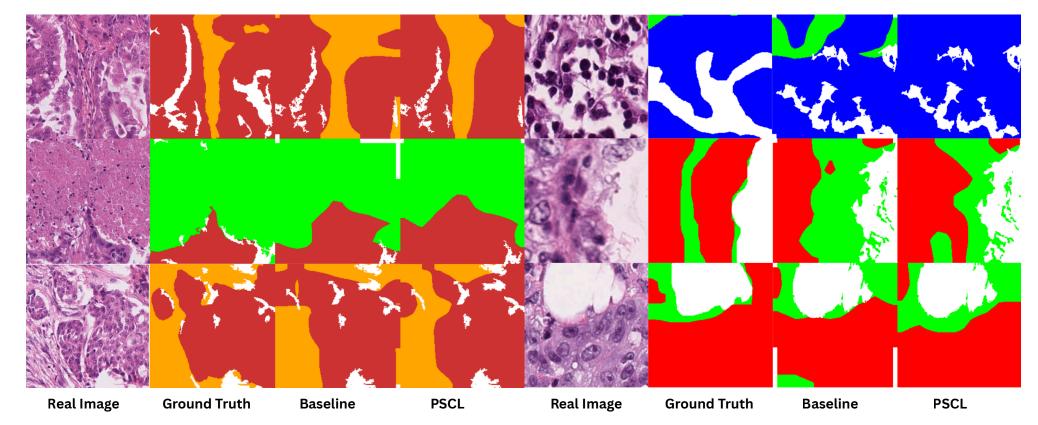
- 1) Classification Training: We train a Swin Transformer Encoder on the patch classification task. We apply MLSM loss and our novel PSCL approach. 2) Pseudo-Label Generation (Stage 1): We take the trained model and produce Pseudo-Labels via argmax on the CAMs with a concatenated background map.
- 3) Encoder-Decoder Supervised (Stage 2): We attach a Mask2Former Decoder to the trained Swin Transformer backbone. We then train end-to-end using the pseudo-labels as ground truth.

#### Results

#### **Strong Performance w.r.t SOTA**

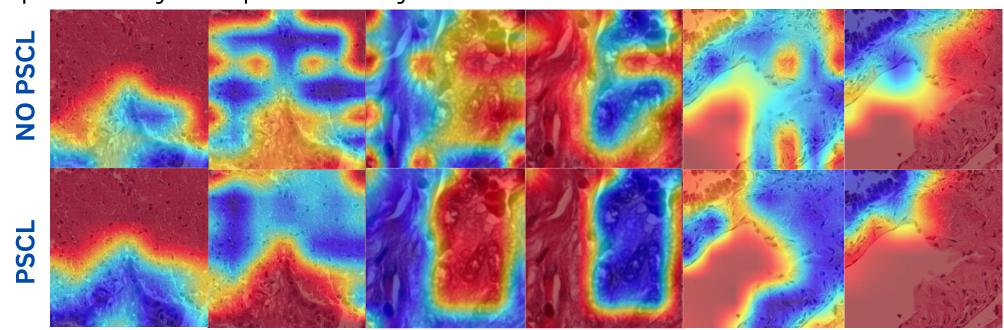
We demonstrate performance that is comparable to state-of-the-art. This is across both stages of training. In particular, we rank 2<sup>nd</sup> on the BCSS-**WSSS** dataset.

|          | Stage 1                                                                   |       |       |       |       |       |       | Stage 2                   |                                  |                |       |       |                  |                 |
|----------|---------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|---------------------------|----------------------------------|----------------|-------|-------|------------------|-----------------|
| Seg      | Method                                                                    | TE    | NEC   | LYM   | TAS   | fwIoU | mIoU  | Method                    | $\mathbf{TE}$                    | NEC            | LYM   | TAS   | $\mathbf{fwIoU}$ | mIoU            |
| sto      | UAM (Kang et al., 2025)                                                   | 76.24 | 80.43 | 76.28 | 72.02 | 75.38 | 76.24 | UAM (Kang et al., 2025)   | 78.62                            | 82.31          | 79.03 | 73.31 | 76.98            | 78.31           |
|          | TPRO (Zhang et al., 2023)                                                 | 74.82 | 77.55 | 76.40 | 70.98 | 73.81 | 74.94 | TPRO (Zhang et al., 2023) | 75.80                            | 80.56          | 78.14 | 72.69 | 75.31            | 76.80           |
|          | MLPS (Han et al., 2021)                                                   | 71.72 | 76.27 | 73.53 | 67.67 | 70.80 | 72.30 | MLPS (Han et al., 2021)   | 73.90                            | 77.48          | 73.61 | 69.53 | 72.51            | 73.63           |
| Ď        | MLPS (Han et al., 2021)<br>Swin (Ours)                                    | 67.49 | 72.39 | 69.82 | 65.28 | 67.35 | 68.75 | Ours                      | 70.42                            | 73.66          | 71.81 | 66.51 | 69.40            | 70.60           |
| ,,       | Method                                                                    | TUM   | STR   | LYM   | NEC   | fwIoU | mIoU  | Method                    | $\mathbf{T}\mathbf{U}\mathbf{M}$ | $\mathbf{STR}$ | LYM   | NEC   | $\mathbf{fwIoU}$ | $\mathbf{mIoU}$ |
| VSS      | UAM (Kang et al., 2025) TPRO (Zhang et al., 2023) MLPS (Han et al., 2021) | 78.97 | 71.72 | 58.16 | 63.59 | 72.20 | 68.11 | UAM (Kang et al., 2025)   | 79.89                            | 74.66          | 64.71 | 70.88 | 75.76            | 70.88           |
| <u>۲</u> | TPRO (Zhang et al., 2023)                                                 | 77.18 | 63.77 | 54.95 | 61.43 | 68.55 | 64.33 | TPRO (Zhang et al., 2023) | 77.95                            | 65.10          | 54.55 | 64.96 | 67.36            | 65.64           |
| ŝ        | MLPS (Han et al., 2021)                                                   | 70.76 | 61.07 | 50.87 | 52.94 | 63.89 | 58.91 | MLPS (Han et al., 2021)   | 74.54                            | 64.45          | 52.54 | 58.67 | 66.48            | 62.55           |
| ĕ        | Swin (Ours)                                                               | 78.66 | 67.05 | 49.11 | 63.96 | 70.13 | 64.70 | Ours                      | 79.41                            | 68.91          | 52.63 | 63.91 | 71.60            | 66.22           |



#### **More Complete Activations**

We demonstrate that PSCL helps to address the issue of partial activation. Application of PSCL produces stronger, more consistent activations, both qualitatively and quantitatively.



#### **Faster and Simpler Training Schema**

Through conducting thorough evaluations we find:

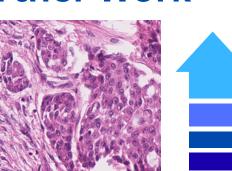
- 1) Our method only requires 5 epochs of training to reach peak performance. This is in comparison to other approaches which require up to 20 epochs.
- 2) Using pre-trained weights significantly boosts performance. Whether industry standard (ImageNet) or self-produced, pre-trained weights are necessary.
- 3) Using pseudo-labels to train a supervised encoder-decoder boosts performance by ~2%. A small performance win with little additional work

#### Conclusion

1) Novel Contrastive Learning Approach (PSCL): We introduce and demonstrate the viability of a novel contrastive learning based approach to weakly supervised semantic segmentation for histopathology. This approach rivals state-of-the-art and requires no further post-processing.

2) WSSS is a viable approach: We conduct a thorough examination of the end-to-end WSSS pipeline and various modifications and demonstrate its viability in addressing the annotation burden.

### **Further Work**

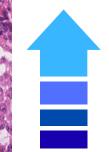


**Improve LUAD Performance** 

How can we bring LUAD

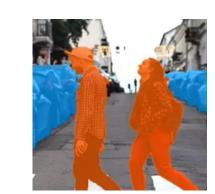
performance gains to those

of BCSS?









**More Classes** Does PSCL generalise to more classes?

**Different Domain** Can PSCL work on different domains?

#### References

KANG, Y.; LI, H.; SHI, X.; ZHANG, X.; XING, Y.; WEN, Y.; WANG, Y.; CUI, L.; FENG, J.; AND YANG, L., 2025. Exploring Unbiased Activation Maps for Weakly Supervised Tissue Segmentation of Histopathological Images. IEEE Transactions on Medical Imaging, 44, 6 (jun 2025), 2631-2642. doi:10.1109/TMI.2025.3541115.1

HAN, C.; LIN, J.; MAL, J.; WANG, Y.; ZHANG, Q.; ZHAO, B.; CHEN, X.; PAN, X.; SHI, Z.; XU, X.; YAO, S.; YAN, L.; LIN, H.; XU, Z.; HUANG, X.; HAN, G.; LIANG, C.; AND LIU, Z., 2021. Multi-layer pseudo-supervision for histopathology tissue semantic segmentation using patch-level classification labels. https://arxiv.org/abs/2110.08048. 2

ZHANG, S.; ZHANG, J.; XIE, Y.; AND XIA, Y., 2023. Tpro: Text-prompting-based weakly supervised histopathology tissue segmentation. In Medical Image Computing and Computer Assisted Intervention MICCAI 2023, 109-118. Springer Nature Switzerland, Cham. 3